说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 幂剩余函数
1)  power residue function
幂剩余函数
1.
In this new system,we use still power residue function to cryptograph,but periodicity of the cryptogram function has been removed.
新体制用组合变换为底的幂剩余函数作和及毕达哥斯作加、解密变换、消除了RSA体制的周期而不能被直接破译 ,本文的论证表明 ,新体制的安全性远高于RSA体制。
2)  the function about the balance of the power
幂余函数
1.
This paper gives the concept of the function about the balance of the power and the transformation about the balance of the power.
提出幂余函数和幂余变换的概念。
3)  Surplus function
剩余函数
1.
Surplus function variational quantum Monte Carlo (SFVMC) approach for the electronic excited state has been established in this paper.
提出了用于电子激发态的剩余函数变分量子Monte Carlo(SFVMC)方法。
2.
The solutions included treating bracket,calculating the surplus function,changing string into numeric and so on.
其中包括括号处理、计算剩余函数、字符串转换成数值等问题的处理方法。
4)  residual function
剩余函数
1.
Based on the principle of the residual function in statistical mechanics and derived from a new concise reduced virial equation of state for ammonia which had been presented by our research group in 1998, the new correlations for determining two energy derivative properties-enthalpy and entropy of ammonia have been proposed in this paper.
本文根据统计力学与热力学剩余函数理论,结合本课题组已建立的氨工质新状态方程,推导出一则可供精确确定氨的焓(h)与熵(s)参数的新关联式。
5)  power residue
幂剩余
1.
Cohen proved that except for finite q as exceptional values,there are some primi- tive elements (roots) ξ of GF(q) such that aξ+b can be used to represent a nonzero cubic power residue.
设 GF(g)为一有限域,a 和 b 为域中单位,柯亨曾证明:除去有限个q的例外值,GF(q)中存在本原元ξ使得 aξ+b 可表示一个非零的三次幂剩余。
2.
This paper deals with the relation between dth power residues and primitive roots for the residue class ring Z_p~α, and proved that polynomals ax~d+b can be used to represent some primitive roots, provided that p is sufficiently large while d is relatively small, where a and b are units, and d is a divisor of p—1 .
本文研究了剩余类环Z_p的d次幂剩余和原根的关系,证明了当p充分大且d|p—1,d相对于p较小时,多项式ay~d+b可用来表示原根,其中a和b都是单位。
6)  nilpotent residual
幂零剩余
补充资料:幂剩余


幂剩余
power residue

幂剩余【即Wer resi山忿;cTene朋滋~eT」,模。的对于给定的整数n>1,使同余式(congI’Uence) x”二a(n班d附)可解的且与m互素的整数a.数a叫做模m的n次剩余(resid瞿).如果此同余式不可解,则称a为模附的n次非剩余(non一resid优).当n二2时,幂剩余和非剩余称为二次的(qUadI’at1c);n“3时称为三次的〔cubic);而n=4时称为四次的(biqt旧d份-赶e). 对于素数模。二p的情形,同余式x”二“(modP)的可解性间题可用Euler检验(Euler test)解决:设q=(n,p一1),则同余式x”三a(nx心p)可解的充要条件为 a(p一’)/叼二l(modP).如果这个条件得以满足,那么原同余式对模P有q个不同的解.由此检验法可知,在数l,…,p一l中恰好有(p一1)/q个模p的n次剩余和(q一l)·(p一1)/q个n次非剩余.见幂剩余和非剩余的分布(distribution of power resid优5 and non·residues). C.A,C丁ena月曲撰【补注】在二次剩余的情形,可以定义幂剩余符号(power,residue syln玩1).设K是一个含有。次单位根的数域,A是K的整数环而补是A的素理想.又设p与”互素而a6A.如果亡。是一个。次单位原根,且有 a(N(p)一’)/”二心二(1llod,),其中N(p)是朴的范数,即商环A/p的元素的个数.那么就定义幂剩余符号为: 乙粤、一心二· \p/。当(“/p)。=l时,a是模p的n次幂剩余,即“二b”(n1(对p)对于b〔A是可解的.当K=Q,九二2且p=P笋2时就回到了二次剩余符号,见Leg.dre符号(Legendre syln比1). 同样存在幂剩余互反律(power一res过ue recjPro-city恤ws).可见参考文献【A2],其中当K=Q,n二2时,就成为特殊的二次互反律.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条