1)  QPSK
正交相位调制
2)  orthogonal design
正交
1.
In this paper, the effect of composition of transition metal oxides obtained by the orthogonal design , atmosphere and the nucleation agent on the gloss of metal glazes in ferric oxides was discussed.
采用廉价的铁系氧化物,研究了正交设计的过度金属氧化物组成、气氛、晶核剂等因素对釉面金属光泽的影响。
2.
The second and the third step reaction conditions of the synthesis of L-carvone from d-limonene were studied by the use of orthogonal design, and the whole yield of these two reactions is more than 80% by the use of new reaction conditions.
利用正交法对d - 艹宁 烯合成L -香芹酮的第二步 (脱氯化氢 )和第三步 (水解反应 )反应的工艺条件进行分析 ,得到了较为理想的工艺 ,使二、三两步反应总收率达 80 %以上。
3.
In this experiment,orthogonal design with three levels of four factors(Taq DNA polymerase, dNTPs,primer and Mg2+) was used to optimize the pepper ISSR-PCR reaction system.
本试验利用正交设计,以辣椒SS69为试材,从Taq酶、dNTPs、引物、Mg2+4因素3水平来优化辣椒ISSR-PCR反应体系。
3)  Orthogonal
正交
1.
Design of Two-direction Orthogonal Partially Prestressed Concrete Beam with 32.0m × 17.0m Span;
32.0m×17.0m跨双向正交部分预应力混凝土梁的设计介绍
2.
Matri representation of the orthogonal complement in euclidan space;
欧氏空间中正交问题的矩阵描述
3.
New Definition of the Conditional Number of a Matrix──Nonorthogonal Degree;
矩阵条件数的新定义──矩阵的非正交度
4)  orthogonality
正交
1.
Completeness and orthogonality of scale transformation and its proof;
尺度变换函数的完全性和正交性及其证明
2.
Regularity and orthogonality of a new family of bivariate wavelets;
一类新的二元小波的正则性及正交性
3.
Orthogonality For Defining Hermite-polynomial;
利用正交性定义Hermite多项式
5)  quadrature
正交
1.
This paper analyzed the issues about the sideband and local oscillator leakage of a direct quadrature conversion transmitter, educed the quantitative relationship of the amplitude and phase imbalance in the modulation signal as well as local oscillator signal and the sideband and local oscillator leakage, and simulated it.
本文分析了直接正交上变频无线发射机中的边带和本振泄漏问题 ,导出了调制信号和本振信号的幅度和相位不平衡度与发射机的边带和本振泄漏抑制能力之间的定量关系 ,并进行了仿真。
2.
The theory of digitial calibration for the gain and phase mismatches between the in-phase and quadrature branches is discussed.
讨论了正交双通道幅相不一致的数字校正原理 ,提出了两种获得幅相误差函数的方法 ,包括最小二乘法和改进的Gram Schmidt正交化方法 。
6)  orthonormal
正交
1.
Structure based on nerve net time finity orthonormal wavelet;
基于神经网络的时有限正交小波构造
2.
Characterization of Separable Bivariate Orthonormal Compactly Supported Wavelet Basis;
二元可分正交紧支集小波基的刻划
3.
The paper introduces a kind of orthonormal frequrncy division multiplexing(FDM) digital modulation technique with a good performance which can solve,in some way,the fading problem of both the channel selective one resulted from multi\|path fading and Rayleigh fading.
介绍一种可较好地解决多径衰落所引起的信道选择性衰落 ,又可克服信道的瑞利衰落、性能优良的正交频分复用数字调制技术。
参考词条
补充资料:Esa相阵控雷达/相位阵列雷达

aesa〈active electronically-scanned array〉主动电子扫描相控阵列雷达是21世纪主流的军事雷达,全世界第一种实用化aesa相控阵列雷达是an/spy-1神盾舰雷达系统, an/spy-1系统拥有强大远距侦蒐与快速射控能力,他是专为美军新一代神盾舰载作战系统发展而来的“平板雷达”。

aesa主动电子扫瞄相控阵列雷达,就是一般所称的「相列雷达 / 相阵控雷达」,美军神盾舰系统就是由aesa+c4指挥、管制〈武器〉、通讯、计算机等整合而成的高效能『海上武器载台』。

aesa相阵控雷达最初由美国无线电公司(rca)研发制造出来,后来该公司由于经营不善,被通用航天公司(ge aerospace)购并成为其集团下之雷达电子部门,但往后ge aerospace又将该部门卖给 洛克希得.马丁公司(lockheed martin) (美国最大的军火供应商),因此spy-1相控阵列雷达现在是“洛马”的专利技术,如今aesa相控阵列雷达在“洛马”公司的后续改进上,已开发出战机、飞弹、防空等专用的缩小化aesa相控阵列雷达,甚至外销提供全球各神盾舰、各式防空飞弹所需要的雷达〈神盾系统是美国雷神公司的产品〉。在一般人的印象中,旧式雷达就是一个架在旋转基座上的抛物面天线,不停地转动著以搜索四面八方;而an/spy-1相位阵列雷达的天线从外观上看,却只是固定在上层结构或桅杆结构表面的大板子。

旧式传统的旋转天线雷达必须靠著旋转才能涵盖所有方位,要持续追踪同一个目标时,要等天线完成一个360度旋转周期回到原先位置时才能作目标资料的更新,等到获得足够的资料时,敌方飞弹早已经兵临城下,拦截时间所剩无几,这种力不从心的情况在面对各式新一代高速先进超音速反舰飞弹时,pla舰队损失会更加惨重;而如果飞弹或战机进行高机动闪避,由机械带动来改变方位的旧式雷达天线很可能会跟不上目标方位变化,难以有效追踪进而被偷袭成功。传统雷达的雷达波都有一个受限制的波束角,因此雷达波会形成一个扇形查找断层网,距离越远则雷达波对应的弧长越大,换言之,单位面积对应到的能量也随距离拉长而越来越低(雷达波强度随距离的平方成反比),分辨率与反应度自然无法令人满意;加上旧式长程雷达都会使用较长的波长以传递较长的距离,而波长越长分辨率就越低,更使这个问题恶化。例如;传统雷达在搜索第二代掠海反舰飞弹这类低体积讯号的目标时,传统长程搜索雷达即便在目标进入搜索范围后,通常还是得旋转几圈后,才能累积足够的回波讯号来确认目标。为了弥补这个弱点,这类长程搜索雷达只好将雷达旋转速度降低(往往需要十秒钟以上才能回转一圈),让天线在同一个位置上停留更久,以接收更多各方位的脉冲讯号,然而这样又会使目标更新速率恶化。至于用来描绘目标轨迹的追踪雷达〈照明雷达〉则拥有较快的天线转速(例如每秒转一周)以及较短的波长,尽量缩短目标更新时间,但也使得天线较难持续接收同一目标传回的讯号,侦测距离大幅缩短。因此,长距离侦测以及精确追踪对传统旋转雷达而言,是鱼与熊掌不可兼得的。

aesa相位阵列雷达简介

相位阵列雷达的固定式平板天在线装有上千个小型天线单元(又称移相器,phase shifter),每个天线都可控制雷达波的相位(发射的先后),各天线单元发射的电磁波以干涉阵列原理合成接近笔直的雷达波束,旁波瓣与波束角都远比传统雷达小,主波瓣则由于建设性干涉而得以强化,故分辨率大为提升;至于波束方位的控制则是依照“海更士”波前原理,透过移向器之间的相位差来完成。由于移相器的电磁波“相位”改变系由电子“阵列”控制方式进行,相位阵列雷达可在微秒内完成波束指向的改变,因此在极短的时间内就能将天线对应到的搜索空域扫瞄完毕,故能提供极高的目标更新速率。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。