1) Spatial template convolution filtering
空间模板卷积滤波
2) spatial convolution
空间卷积
3) template convolution
模板卷积
1.
Draw lessons from the filtering based on template convolution in digital image processing,a new method of outlier elimination is proposed.
借鉴数字图像处理中基于模板卷积线性滤波方法的思想,提出了一种基于模板卷积滤波的野值剔除方法,从理论上分析了该方法的高精度性和高实时性。
2.
According to the correlation of measurement data,combining with the theory of least square,a new method of outlier elimination is proposed by improving the principle of template convolution method which we proposed sometimes ago.
针对测量数据前后相关性这一客观事实,并结合最小二乘理论,对前期提出的基于模板卷积的野值剔除方法进行了改进,从理论上分析了该方法的高精度性和高实时性,并进行了仿真实验。
4) convolution mask
卷积模板
1.
This paper presents the scheme for designing the 2-D convolution mask of Gabor filter in the frequency domain, This scheme avoids the problem of choosing the sampling frequency in the spatial domain, or the sampling frequency must be determined when the mask is obtained by means of sampling the Gabor function, the impulse response of the Gabor filter.
本文给出了直接从频域构造Gabor滤波器二维空域卷积模板的计算方法,回避了在空间域对Gabor滤波器冲激响应函数抽样以获取卷积模板所遇到的采样频率的选择问题。
2.
To improve the arithmetic operation speed,it constructed the two type LS-SVR convolution mask based on the filtering strategy and LS-SVR characteristic,training process of LS-SVR is turned into simple weighted summation operation which increased the algorithmic practicability.
为提高算法的运算速度,根据滤波策略和LS-SVR的特点,先期构造了二种LS-SVR卷积模板,将LS-SVR的训练过程转化为了简单的加权求和运算,增加了算法的实用性。
5) Deconvolution filtering
反卷积滤波
1.
We find that the general methods such as deconvolution,geometry mean filtering and iterative deconvolution filtering can t restore the high qualified image,so we proposed an arithmetic of modified iterative increment deconvolution filter.
本文针对因运动和噪声而模糊的图像进行了复原研究 ,发现通常的反卷积法、几何均值滤波和普通的迭代反卷积滤波均不能实现高质量的图像复原 ,为此 ,我们提出一种改进的迭代增量反卷积滤波算法 ,实验表明 ,按我们的方法可以得到质量上乘的图像复
6) Convolver
卷积滤波器
1.
A New Design Method of Large-capacity Delay Line for Convolver;
一种卷积滤波器大容量延迟线实现新方法
补充资料:滤波反投影或卷积反投影
滤波反投影或卷积反投影
影像学术语。当代影像学设备进行影像重建的数学方法。在直接用扫描后所获得的投影轨迹剖面图反投影重建出的CT图像中,无法避免角度卷入条纹伪影(angular aliasing streaks)造成的模糊和失真。这种现象与被扫描层面的空间频率中高频信息的损失有关。使用一种精密的数学方法去除这种模糊。称为“展现”(unfolding)或去卷积(deconvolution),即在反投影前使用一种数学的“滤器”或卷积函数对原始数据进行修正,然后再进行反投影。两步数学处理过程合称为滤波(修正后)反投影或卷积(后)反投影。这种方法的优点是处理过程简单,速度快,所得图像逼真、清晰。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条