说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 双-Toeplitz
1)  bi-Toeplitz
双-Toeplitz
2)  Toeplitz technique
Toeplitz化
1.
Application of Toeplitz technique to beamforming algorithm based on shipborne uniform circular array;
Toeplitz化技术在舰载圆阵波束形成算法中的应用
2.
Application of the Toeplitz technique to ESB adaptive beamforming;
Toeplitz化在ESB自适应波束形成算法中的应用
3)  partial position symmetry
Toeplitz阵
4)  Toeplitz product
Toeplitz积
1.
Toeplitz products on the Bergman space of the unit ball
单位球Bergman空间上的Toeplitz积
5)  Toeplitz approximation
Toeplitz化处理
1.
It presented the Toeplitz approximation eigenspace-based linearly constrained minimum variance adaptive beam-forming algorithm(TELCMV).
该算法利用阵列接收信号的相关性进行Toeplitz化处理、把期望信号方向向量向信号子空间投影、进行线性约束最小方差波束形成来得到TELCMV权向量;TELCMV权向量没有包含噪声子空间的分量,而期望信号和干扰信号的输出不变,所以提高了输出信干噪比(SINR),收敛速度也快,在低信噪比和小快拍数下能取得较好的波束形成性能。
6)  Toeplitz matrices
Toeplitz矩阵
1.
Distribution of discrete random variable and several types of Toeplitz matrices;
离散型随机分布和几类Toeplitz矩阵
2.
The classification of normal Toeplitz matrices;
正规Toeplitz矩阵的分类
3.
In this Paper,three types of Toeplitz matrices can be constricted by using geometric distribution,Logarithmic distribution and negative binomial distribution respectively.
分别利用几何分布的随机变量分布律、对数分布随机变量分布律和负二项分布的随机变量的分布律构造出三类Toeplitz矩阵。
补充资料:Toeplitz矩阵


Toeplitz矩阵
Toeplitz matrix

悠落,“吐一‘· 这些条件对于由把一个序列{、。}通过矩阵(a。*)变换成序列{。。}: 。。一*客,a一,*而定义的矩阵求和法(耳必trixs切rn丑.tiozl nrthed)的正则性(见正则求和法(regUlars切爪mation脱th以七))是必要充分的.这些条件对正则性的必要性和充分性在三角形矩阵的情形是由0.予哭plit:所证明的.【补注】在文献中术语“T吮plitZ矩阵”也用于具有性质:aj*仅依赖差j一k,即对所有j和人,aj*=:,一*的(有限或无限)矩阵(气*).以下资料是关于这意义下工沈p比矩阵的. 有限予沈plits矩阵在统计学、信号处理与系统理论中有重要应用.对这样的矩阵有不同的求逆算法(N.Levinson,I,Schur和其他人).一个有限玉祀pljtz矩阵A=(:,一*)犷,*一1的逆不是TocplitZ的,但是它有以下形式:A一’二(AI) 「「二。。…01「夕.、,_1…夕_。:一、;】{{义1‘。…”{{“夕。‘’.y一{+ LL‘·’一1…‘。J Loo“‘yoJ r。。。,二。。〕r。、_二_,…、.1) Iv_00…00}}0 ox_…x。}}一}夕_。*,y_。O“’00}}·……1>, }..……,1」0 00…x」! Ly一y一y一3’二y一0」L“00“.“」)其中假定x。举0,且x。,…,x。和先。,…,y《,是以下方程的解:*虱“,一x*一“,。,*瓦:,一*夕*一。一。,。(、一o,。·,n).这里占‘*是K-ronecker符号.公式(AI)称为rox-余pr一SeITrncul公式(Gohberg一S~ul fomlula))(见【A41).关于这方向的进一步发展见tAS],[灿]. 无穷工咒plit“矩阵〔“,一*)厂*一、在田bert空间l:上定义了一个重要的算子类,可以借助于它们的象征艺界一。:,尸,以}一1来分析.这些算子的理论是.1飞喇itZ矩阵【1、州itZ matr议;T范n朋双a MaTp“助“],T矩阵(T一Inat血) 满足以下诸条件的一个无穷矩阵(a。*)。.*一,,2,二 艺la。*1镬M,”=l,2,…,其中M不依赖于川 。峡a。*一0,k一1,2,…;丰富的且包含反演定理(基于象征的因子分解),Fred-llolm定理,用象征的卷绕数来表示的指标的显式公式,对其有限部分的行列式的渐近公式,等等.事实上,无穷Tocplitz矩阵构成了显式反演公式已知的很少的几类算子之一,且它们提供了现代指标理论的第一批例子之一关于最近文献见【A2],【A3],【A71.其矩阵元素的象征是有理的无穷Tocplitz矩阵是特别令人感兴趣的,且对应的算子可借助于数学系统理论中的方法来分析(见IAI」).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条