1) polar decomposition
极值分解
2) extremal solution
极值解
1.
The existence of extremal solutions of the boundary value problems(φ(x(2m-2)(t)))″=f(t,x,x″(t),x(4)(t),…x(2m-2)(t)),t∈x(2j)(0)=0,x(2j)(1)=0,j=0,1,…m-1is obtained by constructing iterative sequence via upper and lower solutions.
利用上下解构造迭代序列获得边值问题(φ(x(2m-2)(t)))″=f(t,x,x″(t),x(4)(t),…x(2m-2)(t)),t∈[0,1]x(2j)(0)=0,x(2j)(1)=0,j=0,1,…m-1极值解的存在性。
2.
We consider the existence for extremal solutions of a class (QL) type stochastic differential equations which the coefficients do not satisfy Lipschitz condition by using monotone iterative metho
本文在非Lipschitz条件下,利用单调迭代法讨论了一类(QL)型随机微分方程极值解的存在性。
3) extremal solutions
极值解
1.
Some existence theorems of extremal solutions are obtained, which extend the related results for this class of equations on a finite interval with a finite number of moments of impulse effect.
研究Banach空间中定义在无穷区间R+上具有无穷多个脉冲点的非线性脉冲Volterra积分方程组解的存在性· 给出了若干极值解的存在定理 ,改进了定义在有限区间上具有有限个脉冲点情形时该类方程的相应结果 ,并利用该结果讨论了一个无穷维积分方程组·
4) constrained extremal solution
约束极值解
1.
In this paper,we used the concept of metric generalized inverse,gave the characterization and construction of constrained extremal solutions of T(x)=h in the set of extremal solutions of L(x)=y.
运用线性算子的度量广义逆概念,在L(x)=y的极值解集合中,给出T(x)=h的约束极值解的精确刻画。
5) least extremal solution
最小极值解
1.
This paper studies the least extremal solutions of ill-posed Neumann boundary value problems for a class of semilinear elliptic equations in Lp(?), The existence of the least extremal solution is proved by the metric generalizea inverse and Schauder fixed point theorem.
运用度量广义逆 与Schauder不动点定理证得该问题的最小极值解的存在性,应用Banach空间几何与Sobolev空问的 方法,给出最小极值解的等价条件。
6) extremal random solution
极值随机解
1.
The existence of extremal random solutions and random comparison results for these systems of random equations are also obtained.
这些随机方程组的极值随机解的存在性和随机比较结果也被获得。
补充资料:Weierstrass条件(对变分极值的)
Weierstrass条件(对变分极值的)
eierstrass conditions (for a variational extremun
与 ,(,)一丁:(:,、(:),、(。))过:, ,‘! L:R xR”xR”~R,在极值曲线x;、(t)上达到一个强局部极小值,其必要条件是不等式 、(r,x。(r),又。(r),亡))o对所有的t,t。蕊t毛t、和所有的省任C”都满足,其中‘·是Weierstrass澎函数(Weierstrass吕J一几mC-tion).这条件可借助于函数 n(t,x,p,u)=(p,u)一L(t,x,u)来表示(见n0HTp“「“H最大值原理(Pont月闷gm~-mum pnnciple)).Weierstrass条件(在极值曲线x。(t)上六)0)等价于函数n(r,x.,(t),尸。(r),u)当“=交.,(r)在u上达到极大值,其中夕。(t)=L、(t,x。,(t),又。(t)).这样,Weierstrass必要条件是floH-Tp。朋最大值原理的特殊情形. Weierstrass充分条件(Weierstrasss川币eientcon-山tion):为了泛函 叭 ,(,)一丁:(:,、(。),*(。))、。, r‘- L:R xR”xR”一,R在向量函数x.,(t)上达到一个强局部极小值,其充分条件是在曲线x。(t)的一个邻域G中存在一个向量值场斜率函数U(t,x)(测地斜率)(见H皿祀rt不变积分(Hilbert invariant integral)),使得 交。(t)=U(t,x。(t))和 产(t,x,U(t,x),七))0对所有(t,x)〔G和任何向量亡6R”成立.【补注]对在极值曲线的隅角的必要条件,亦见Wei-erstrass一Erd”.un隅角条件(W匕ierstrass一Erdrnanncomer conditions).weierstrass条件(对变分极值的)[Weierstrass cOI公i-tions(for a varia垃翻目翻drelll.ll:Be滋eP山TPaccayc-月OBH,,KcTpeMyMa」 经典变分法中对强极值的必要和(部分地)充分条件(见变分学(variational cakulus)).由K .We卜erstrass于1879年提出. 节几ierstrass必要条件(Weierstrass neeessary con-dition):为使泛函
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条