说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 算子表示
1)  operator representation
算子表示
1.
Related proofs are given to show that the operator representation is more intuitional and compact than the conventional one.
首先引入三个基本算子:移位算子、恒等算子和向前差分算子,然后将Bernstein-Bezier形式的Bezier曲线表示为更为简洁和直观的算子表示形式,并进一步讨论算子表示下Bezier曲线的各种性质,给出相关证明过程。
2.
This paper gives the operator representation of rational Bézier curves′ derivatives,and the operator representation of the necessary and sufficient conditions of G1 and G2 continuous connexion between two adjacent random degree rational Bézier curves according to G1 and G2 continuous conditions.
文章给出了有理Bézier曲线各阶导矢的算子表示,并根据G1和G2连续条件,给出了两条邻接任意次有理Bézier曲线间G1和G2连续拼接充要条件的算子表示
2)  OSR
算子和表示
1.
In this paper, OSR (operator-sum representation) is used as the description of quantum operation, a.
在本文中采用算子和表示作为量子操作的形式,对量子过程层析进行研究。
3)  vertex operator representation
顶点算子表示
1.
A representation space is constructed by the root lattice of complex semisimple Lie algebras,on which a new kind of vertex operators is defined,and then the vertex operator representation is given for all of the affine Lie algebra of first kind.
利用复半单李代数的根格构造出表示空间,并在上面定义一类新的顶点算子,然后利用它们给出所有第一类仿射李代数的顶点算子表示
4)  Riesz representable operator
Riesz可表示算子
5)  Kraus Operator-sum Representation
Kraus算子和表示
6)  the matrix representation of operator
算子矩阵表示
1.
In the second part, we firstly introduce the first concept of the Toeplitz-Bezout matrix, and secondly we study some properties of Toeplitz-Bezout matrix with the method of polynomial model and the matrix representation of operator.
本文第二部分介绍了Toeplitz-Bezout矩阵的第一种定义,并用类似于[12]中的多项式模和算子矩阵表示的方法,得到了关于Toeplitz-Bezout矩阵的一些性质。
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条