1) partial distribution
偏尾分布
1.
In this paper,according to the traits of military risks decision-making,the authors put forward a general PD-utility function based on the partial distribution ().
针对决策领域的风险特点,以偏尾分布[2,3]为基础,提出了具有一般意义的PD-效用函数。
2.
In this paper,PD-utility function is put forward to describe the prospect behavior based on the partial distribution.
以偏尾分布为基础,提出了预期行为的一种新型效用函数——PD-效用函数。
3.
Based on the partial distribution,we give the basic conditions and put forward the optimal method of decision making for expanding the production scales under the cases that the variable cost,fixed cost or total cost would be separately divided after expanding.
在偏尾分布的基础上,针对生产规模扩张时变动成本、固定成本和总成本摊薄3种不同情况,给出了普遍适用的商品生产规模扩张的基本条件及最优化扩张规模的分析模型与决策方法。
3) heavy-tailed distribution
重尾分布
1.
Some equivalent conditions of one class of heavy-tailed distributions;
一类重尾分布族的若干等价条件
2.
Influence of heavy-tailed distribution on network traffic
重尾分布对网络流量性质的影响
4) truncated distribution
截尾分布
1.
Because the normal distribution is not fit for the practical design,the truncated distribution has been presented to solve this problem,the reliability index under truncated distribution has also been calculated.
对工程中大量存在的截尾分布与计算中使用的理论分布不同问题作了详细的研究,计算了在变量服从截尾正态分布时的可靠性指标的计算,并给出了如何确定实际工程中的截尾点的方法。
2.
Based on stress life model and distribution theory, the stress life model of truncated distribution was set up.
根据应力 寿命模型和截尾分布理论 ,建立了截尾分布的应力 寿命模型 ,对工程上常用的金属材料疲劳寿命多服从对数正态分布这一事实 ,工作应力服从对数正态分布的情况下 ,推导出疲劳可靠度计算公式·对工作应力服从其它分布的情况也可以利用本文给出的方法推导出·所建模型消除了疲劳可靠性计算的系统误差 ,使结果更符合实际情况·通过实例计算表明 ,给出的计算方法是可行
5) tail distribution
尾分布
1.
Based on the theory of extreme event risk and the practice of risk analysis of the project cost, a combination distribution model for risk analysis of project cost, which is composed of the tail distribution and original distribution, is put forward.
根据极端事件风险的理论和工程造价风险分析的实际,提出了由左尾分布、原始分布和右尾分布组成的工程造价风险分析的组合分布模型,给出了确定尾分布类型的具体方法,建立了组合分布模型的参数估计的加权最优化模型,并运用它来预测工程造价的风险。
2.
Based on the theory of extreme event risk,a combination distribution model composed of the original distribution and tail distribution was put forward.
建立在极端事件风险的理论基础上,提出了由原始分布和尾分布组成的组合分布模型。
6) cutting-off-tail distribution
截尾分布
1.
In the paper, on the basis of theoretical distributions, the theory of cutting-off-tail distribution at two ends is deduced, in which the stress is fuzzy variable and the strength is random one.
针对应用传统设计方法设计短时、长间隔的特种机器人常会导致机器人非常笨重的缺陷,推导了应力为模糊变量、强度为随机变量组合时的两端截尾分布下的模糊可靠性计算方法,并在排爆机器人设计中进行了应用。
2.
This paper introduces a theory of cutting-off-tail distribution at two ends on the basis of theoretical distributions, in which the stress is a fuzzy variable and the strength is random one.
推导了应力为模糊变量、强度为随机变量的组合时,两端截尾分布下的模糊可靠性计算方法,并应用于排爆机器人设计中。
补充资料:偏态分布
分子式:
CAS号:
性质:偏差不为0的分布。在分析测试中,当被测定本中的组分量分布范围很宽时有时会出现偏态分布。
CAS号:
性质:偏差不为0的分布。在分析测试中,当被测定本中的组分量分布范围很宽时有时会出现偏态分布。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条