1) usser interest degree
用户感兴趣性
2) user profile
用户兴趣
1.
Personalized scheduling algorithm based on user profile for meta search engine;
元搜索引擎中基于用户兴趣的个性化调度模型
2.
This paper combines document concept set with semantic concept hierarchy tree which has been defined in adance to establish each branch s standardization expression in the concept hierarchy tree through machine learning,and excavates the theme semantic concept set in document,and maps the concept to concept hierarchy tree to establish the user profile model.
从抽取概念集合出发,结合预先定义的语义概念层次树,通过机器学习建立概念层次树中各分枝的规范化表示,挖掘蕴藏在文档中的主题语义概念集合,并将概念映射到概念层次树中,从而建立用户兴趣模型。
3.
By mining the user profile in client computer,then combining user profile and traditional LCA,the method could resolve the defect of LCA.
该方法通过设计一种客户端的用户兴趣挖掘模型,同时将用户兴趣模型与局部上下文分析方法相结合,克服了局部上下文分析的缺陷。
3) user interest
用户兴趣
1.
Information based on user interest model of personalized service system
基于用户兴趣模型的信息个性化服务系统的研究
2.
This paper combines user interest model and Web service discovery,puts forward a model which can satisfy users individuation requirement.
该文考虑把用户兴趣模型与Web服务发现相结合,提出基于用户兴趣模型的Web服务发现系统模型,满足人们在服务查询时的个性化需求。
3.
An improved method which can be used to transfer Viewingtime into user interest level nonlinearly.
本文提出了一种将用户的浏览时间转化为用户兴趣度的非线性转换方法,然后将其应用到基于遗传算法的用户兴趣建模中获取用户兴趣向量。
4) users interests
用户兴趣
1.
During the course of searching, It integrates users interests by using agent technology.
在实践过程中,为了体现“个性化”,本系统建立了用户模型,用来记录、管理用户信息,并给出了用户兴趣学习与用户兴趣判断算法及用户主要信。
2.
Then,the problem of acquiring users interests,storage method of users interests,personal search model based on vector space and realization of personal history records are solved.
通过在普通搜索引擎上增加个性分析引擎,本文给出了一种能够根据用户必趣返回不同搜索结果的个性化搜索引擎系统,具体解决了用户兴趣记录获取、用户兴趣记录的存储器、基于向量空间的个性化模型和用户历史访问记录的实现方案。
5) user interest degree
用户兴趣度
1.
Combine with that,quantitative relations of this two behaviors and user interest degree is proposed.
从用户的浏览行为可以反映用户的兴趣出发,分析了用户的浏览行为与兴趣之间的关系,提出了五种用户最小浏览行为组合,并在此基础上对其中三种行为进行转化,得到影响用户兴趣的关键的两种行为,并给出这两种行为与用户兴趣度之间的定量关系。
2.
The experiments used to real data set show web log mining algorithm adding user interest degree is effective and feasible.
应用经典的模糊C-均值聚类算法进行用户访问模式分析,通过在真实数据集上的实验,结果表明引入了用户兴趣度的日志挖掘算法是行之有效的。
6) user interests database
用户兴趣库
1.
The concepts of user interests and their transitions,and the structure of UIDB(shorted for user interests database) are presented,the issues about how to implement are investigated,and those about how to create UIDB by user answers selections,update and refine UIDB by user s feedback information,and the analysis and mining of the data in web sever LOG files are discussed in this paper.
探讨用户兴趣及其转移的概念和用户兴趣库的结构,探讨如何通过用户选答问题来建立并利用反馈信息及服务器上日志记录的分析,修改用户兴趣库。
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条