3) topological semigroup
拓扑半群
1.
The paper deals with the condition composition convergence and shift composition convergence of probability measures sequence on topological semigroups by the method of partial groupization.
本文用部分群化的方法,研究拓扑半群上概率测度的条件组合收敛性与SHIFT组合收敛性,得到了一些充分条件,并推广了一些组合收敛性结果。
2.
Let S be a locally compact second countable Hausdorff topological semigroup.
设 S是局部紧第二可数 Hausdorff拓扑半群 ,μ∈ P( S)是 S上的概率测度 ,本文利用不变测度证明了卷积幂序列{μn}的一个强极限定理。
4) Semi-Scott Topology
半Scott拓扑
1.
Semi-Scott Topology and Semi-Lawson Topology on Semicontinuous Lattices;
半连续格上的半Scott拓扑与半Lawson拓扑
2.
Then semi-Scott topology and semi-Lawson topology are introduced, and their several properties on semicontinuous lattices and strongly continuous lattices are proved.
本文研究了半连续格及半代数格上一些映射性质,讨论了强连续格的函数空间,给出了强连续格的嵌入定理;然后引入了半Scott拓扑与半Lawson拓扑,并讨论了半连续格和强连续格上这两种拓扑的若干性质。
5) semi-Lawson Topology
半Lawson拓扑
1.
Then semi-Scott topology and semi-Lawson topology are introduced, and their several properties on semicontinuous lattices and strongly continuous lattices are proved.
本文研究了半连续格及半代数格上一些映射性质,讨论了强连续格的函数空间,给出了强连续格的嵌入定理;然后引入了半Scott拓扑与半Lawson拓扑,并讨论了半连续格和强连续格上这两种拓扑的若干性质。
6) topological semilattice
拓扑半格
1.
Based on the results which were proved by Horvath in topological ordered spaces,using the fixed point theorem in topological semilattices,we prove the existence of Nash equilibrium points for n-person non-cooperative generic game in topological ordered spaces.
基于Horvath关于序拓扑空间中所给出的拓扑半格的框架结构 ,利用拓扑半格中的不动点定理 ,给出了序拓扑空间中的n -非合作广义对策Nash平衡点的存在性定理。
2.
topological semilattices are partially ordered topological spaces X in which each pair of elements x , x X has a least upper bound x x and the function(.
拓扑半格是偏序拓扑空间,其中每对元素x,x ∈X至少有一个上界工x∨x 且函数(x,x )→x∨x 是连续的。
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条