2) H-valued random Dirichlet series
H-值随机Dirichlet级数
4) radom operator valued functions
随机算子值函数
5) B-valued Dirichlet series
B-值随机Dirichlet级数
1.
Tian Fan Ji has converted the growth of B-valued Dirichlet series to the growth of Dirichlet series, and obtained the sufficient and necessary conditions for the orders of the growth of random Dirichlet series.
这些结果我们应用简化原理可以将其推广到B-值随机Dirichlet级数中去。
2.
This paper studies the (p,q)(R) order and lower (p,q)(R) order of the B-valued random Dirichlet series converging in the whole plane are almost surely the same as that of some B-valued Dirichlet series.
研究了在一定条件下B-值随机Dirichlet级数在收敛全平面上的(p,q)(R)级和下(p,q)(R)级几乎处处等于某一B-值Dirichlet级数的(p,q)(R)级和下(p,q)(R)级。
6) B-valued random Dirichlet series
B-值随机Dirichlet级数
1.
It is studied that the(p,q)(R) order and(p,q)(R) type of B-valued random Dirichlet series converging on the whole plane are almost surely the same as that of ∞n=0σ_ne~(-λ__ns) series under the condition that of 0≤d~2σ~2_n=d~2E‖Z_n‖~2≤E~2‖Z_n‖<+∞.
该文研究了在条件:0≤d2σ2n=d2E‖Zn‖2≤E2‖Zn‖<+∞下,在全平面上收敛的B-值随∞机Dirichlet级数的(p,q)(R)级和(p,q)(R)型,证明了B-值随机Dirichlet级数∑n=0Zn(ω)e-λnsa。
2.
By a method of comparison of two series, the convergence and growth of B-valued random Dirichlet series are studied by only implying a moment condition upon the coefficient of the series.
在B-值随机Dirichlet级数系数在矩条件下,运用级数比较法研究了B-值随机Dirichlet级数的收敛性与增长性。
补充资料:随机数和伪随机数
随机数和伪随机数
random and pseudo-randan numbers
随机数和伪随机数【喇间佣1 al川牌”山一喇闭..m.山娜;cJI了,a如曰e”nce,口oc月卿成.以叹“c月a】 数亡。(特别,二进制数:。),其顺序出现,满足某种统计正则性(见概率论(probability Uleory)).人们是这样区别随机数(mndomn切mbe比)和伪随机数(PSeudo一mn由mn切mbe岛)的,前者由随机的装置来生成,而后者是用算术算法构造的.总是假设(出于较好或较差的理由)所得(或所构造)的序列具有频率性质,这些性质对于具有分布函数F(z)的某随机变量心独立实现的一个序列来说是“典型的”;因此人们称作根据规律F(习分布的(独立的)随机数.最经常使用的例子为:在区间【O,l]上均匀分布的随机数亡。,尸(亡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条