说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 几何多尺度逼近
1)  geometry multiscale approximation
几何多尺度逼近
2)  multi-scale approximation
多尺度逼近
1.
A new approach to the decoupling of multi-dimension sensing information based on multi-scale approximation is proposed.
针对多尺度插值解耦方法的尺度特征计算和尺度阈值优化求解问题,提出了一种基于多尺度逼近的多维传感信息解耦方法。
3)  geometry approximation
几何逼近
1.
Using the improved visual graph and geometry approximation algorithm this paper solves each stage-problem.
首先以可视图法所建的求解环境为基础,将避障路径规划转化为一个多阶段决策问题,对于每一个阶段的子问题,应用改进可视图法和几何逼近算法进行求解,得出各阶段的最短路径,最后对避障路径规划进行动态规划求解。
4)  multiscale geometry
几何多尺度
5)  multiscale successive approximation
多尺度逐次逼近
1.
The multiscale SAGA algorithm,which is based on multiscale successive approximation,can effectively solve the problem.
根据多尺度逐次逼近思想,建立了多尺度逐次逼近退火遗传算法。
6)  multiscale geometric analysis
多尺度几何分析
1.
Multiscale Geometric Analysis Based Image De-Noising in a Coherent Optical System
基于多尺度几何分析的相干光图像
2.
Review of SAR Image Denoising and Fusion Based on Multiscale Geometric Analysis
基于多尺度几何分析的SAR图像的去噪和融合综述
3.
Aiming at the problem of infrared image denoising,a new method is given based on multiscale geometric analysis.
针对红外图像处理中的去噪问题,提出了一种基于多尺度几何分析的去噪方法;首先给出了一种改进的模糊阈值选取方法,然后对图像进行bandelets变换,在此过程中对系数进行改进的模糊阈值处理,最终实现图像去噪,同时针对去噪问题给出了bandelets变换过程中压缩率阈值的选取方法;仿真结果表明,对于被加性高斯白噪声污染的图像,该方法的去噪性能要好于正交小波硬阈值去噪方法,并且能够获得很好的边缘保持效果。
补充资料:多实变函数逼近


多实变函数逼近
eal variables approximation of functions of several

  线性组合形式,其件”甲、(z)为51:,k、‘、(0毛k,冬,;)或cos丸t(0簇介簇n).多元样条是由。个变量的代数多项式“片”按照确定的光滑条件“粘结”在一起而形成的,J臼有着广泛的应用领域.当。=2时,最简单的多元样条是由多项式片按照与坐标轴平行的直线拼接而成的.作为逼近的一工具,州tl,一t。)也可是关于其中某儿个变量的多项式或样条函数.对于整个空间R川(或R阴的某个无界子集)上给定的非周期函数的逼近,可借助于指数型整函数来实现.指数型整函数可以表成绝对收敛的幂级数和的形式味、(l、…t川厂·乏a、卜、,片心 {,们,(2)这里要对任何:>0和所有复变量:,,·二t川有 1〔J。。,(l,二t,,){‘材声xP艺(n比):小 纬1其中阿是一个仅与。有关的常数(见【1}).应该注意到,与多项式不同,函数(2)由无穷多个参数确定 在多儿场合,Weierstrass定理(Weiers盆rass theo-rem)也成之.它阐明了利用代数(或三角)多项式以任意精度逼近某个有界闭集Q〔R‘一L连续的函数厂任C(Q)(或于整个空间R,!连续且按每个变鼠周期均为27T的函数了。乙(Rm))的可能性.在空间几(Q)及()M期情形F的)空间瓦(Rm)(,‘:<优)中类似的结论也成立.关于最佳逼近的存在性、唯一性、最什逼近函数的特征性质等方面的一般结果和定理以及借助于函数的凸集,特别是子空间,进行逼近时的一般对偶关系等均可以推广到阴儿赋范线性函数空间中去 (见【3],阱」).然而,要想在多兀情形下通过考虑具体 的度量和逼近子空间的特定性质而获得这些定理的明确阐述,困难是很大的. 人们已对多变量函数的光滑性与用代数多项式、-角多项式以及整函数对其所作的最佳逼近的递减速度之间的关系问题进行了较透彻的研究. 令Q为R用中的任一开集(特别地,Q=Rn,),e为R’中的单位向量,h>0并令Q*。是由满足It,t十he]任Q的点所Q组成的集合.若f任与(Q)且l簇p<价.则称 公·州;6),,(。二丈鹭日一/(‘干he)一/(‘)}},,。为函数f(t,,…,气)沿方向e关一于L。(Q)度量的连续模 (modulus of contin、l,ty).称 .“占),,(。、一S份p二(厂乙占)‘,(。、为f在气(Q)中的李孕攀· 在周期情形下,三角多项式咒1.。,对具有侣ob。- lev厂一义)偏导数。;_,O,·,:~_、 D几,f二二二一f任L。(R胡) at;’-(其中rv)o为整数,D分=f,v=1,…,m)的函数f任瓦罗)的最佳逼近瓦.,.、氏俘,满足不等式£。,.,.(f)亏(R·)‘M艺n:r’“e.(D:’f;n‘’)“R·),(。) F=l其中e,是沿tv方向的单位向量,常数M与f及n,均无关.对于有r=rl十…十‘(这里r=(r:,二、、))阶广义偏导数 。,,a厂,:__、 D rf=—f任Ln(R用、 改;,…at常“的函数f“瓦俘‘),下述不等式成立:反..二汀)今r,‘兴;,十叉、一严”『广一”咖一(’)女D果 “(Drf;占)几(R·,《K护,o向量h=(h1,…,h,)的长度}h}=(h{十… +儿众),‘,无关. 对于非周期函数f任乌卿),如果利用指数型整函 数作为逼近工具,则也有类似的结论.若函数的光滑 性是借助于更高阶的连续模(光滑模)来描述的,则以 上的结果也可以推广到这样的函数类中去(见[l1). 当利用代数多项式p。卜t,、在某个有界平行多面体 (或某些其他的有界集)上逼近函数f〔气(Q)时,类似 (3),(4)和(5)的正定理已得到了证明.这些定理的 逆,如对定义于有穷区间上的函数那样,只可能在Q 的某个紧子集Q,上成立.如果假定在Q的边界邻域 内有更好的逼近阶(有关正定理指出:有角点的某个邻域 内改善逼近阶是有可能的,见【14]),则这些逆定理均 成立(见【13]),即使(像一元情形那样)在边界的某个 邻域内提高逼近阶,函数f属于H犷,(Q)(函数类 脚十“(Q)由类似于(6)和(7)的条件在C(Q)的度量 下定义)的充分必要条件仍然是未知的(至1983年).然而,下述否定命题是成立的(见〔131).令Q={t:t“r,川(l},则在C中不存在任何函数列欢,(!t})扭=1,2,…;o<:O及多项式列氏(t)的存在性蕴含了对任何定义于Q上的函数f皆有f任H咨(Q). 为阐明多元函数逼近的特定性质,下述结果值得一提. 令瓦.,、了)了为三角多项式兀.,,在又成一己似z),或凳一耳皿z))的度量下对周期2二的二元函数f的最佳逼近,瓦,,。了)了为函数兀,,。(此处双卜。是一个三角多项式,它关于变量‘,的次数至多为”,且关于t:的系数是:2的函数)在又中对f的最佳逼近.可类似地定义E。,。,了片. 如果1  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条