1) self perturbing term
自扰动项
2) disturbance term
扰动项
1.
Improved Particle Swarm Optimization algorithm with disturbance term;
带有扰动项的改进粒子群算法
2.
This paper according to the requirement of netting in the present defence area,adhibits improved particle swarm optimization algorithm with disturbance term(PSO-DT)embattling optimize.
该文在给定的预警区域内根据组网要求,提出了一种带有扰动项的改进粒子群算法(PSO-DT),仿真结果表明该算法能满足组网要求。
3.
In this paper,the author first defines self-correlation of first order moving averge model and computes the mean and variance and covariance of its disturbance term,also gives the covariance matrix Ω of disturbance term and proves it is a postive definite matrix.
首先给出一阶移动平均型式的自相关及其扰动项的均值、方差、协方差,并给出扰动项的协方差矩阵,Ω证明Ω是正定矩阵;然后由此推得回归模型Y=Xβ+μ中β的LS估计值■,给出了■的均值、方差,最后给出了σ2的无偏估计量■2及在正态分布的场合下■与■2的分布。
3) disturbing term
扰动项
1.
In this paper,the three-dimessional Euler equations with a disturbing term have mainly been studied.
本文主要研究了加一项扰动项εu后的三维欧拉方程情况。
2.
On the base of them, I study the following p-Laplacian problem with O-Dirichlet boundary value in a general bounded domain Ω of cone-type: -div(|Du|~(p-2) Du) = g(x, u) + f{x), where f(x) is non-odd disturbing term.
在此基础上,本文作者在一般有界锥形区域Q中讨论了p-Laplacian方程-div(|Du|~(p-2) Du)=g(x,U)+f(x)的Dirichlet零边值问题,这里f(x)是非奇扰动项。
4) AR(2)disturbance
AR(2)扰动项
5) polynomial perturbations
多项式扰动
1.
In this thesis, we study the maximal number of zero of Abelian integrals for a hyperellipticHamiltonian system with a nilpotent saddle under polynomial perturbations.
本文主要研究一类具有幂零鞍点的四次超椭圆Hamilton系统在多项式微扰下的Abel积分零点个数问题,分别讨论了在一次多项式和二次多项式扰动下Abel积分关于哈密顿量h的单调性。
6) stochastic disturbance term
随机扰动项
1.
The paper highlights the distinguish between the original stochastic disturbance term and the derived stochastic error term, suggests that if the relationship error of model or the measurement error of variables exist in an econometric model, in the most of cases the stochastic error term will not fellow the normal distribution assumption and some other Gauss Assumptions.
论文指出了计量经济学模型中源生的随机扰动项和衍生的随机误差项之间的区别;讨论或证明了,如果模型存在总体设定误差和变量观测误差,在很多情况下将导致随机误差项对Gauss假设以及正态性假设的违背。
补充资料:自调自净自度
【自调自净自度】
(术语)同自调项。
(术语)同自调项。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条