1) stochastic robust stabilization
随机鲁棒镇定
2) robust stabilization
鲁棒镇定
1.
Impulsive robust stabilization of Chen′s chaotic system;
陈氏混沌系统的脉冲鲁棒镇定
2.
Memoryless robust stabilization for a class of linear time-delay systems with structured uncertainty;
结构不确定线性时滞系统的无记忆鲁棒镇定
3.
Adaptive robust stabilization for a class of dynamical systems with delayed state perturbations;
一类带时滞状态扰动系统的自适应鲁棒镇定
3) robust stability
鲁棒镇定
1.
On the condition that nonlinear function is bounded and by using the linear matrix inequality(LMI),a sufficient condition of the output feedback stability about the nonlinear uncertain systems with time-delay is obtained and then the design method of its robust stability is also given.
在非线性不确定性满足增益有界条件下,利用线性矩阵不等式方法给出了鲁棒镇定律的存在条件及镇定律存在时相对的镇定律设计方法。
2.
Based on the results of Lyapunov inequality and a necessary and sufficient condition of robust stability for generalized periodically time-varying descriptor systems,the robust stability of a closed-loop system under state feedback control is discussed with its necessary and sufficient condition given,and then the design method for a class of state feedback robust controllers is presented.
通过广义周期时变系统Lyapunov不等式和广义不确定周期时变系统鲁棒稳定的充分必要条件,讨论了在状态反馈控制下闭环系统的鲁棒镇定问题,得到了系统鲁棒镇定的充分必要条件,且给出了一族状态反馈鲁棒镇定器的设计方法;提出了广义周期时变系统二次稳定的概念,并讨论了二次稳定与鲁棒镇定的关系,得到了广义不确定周期时变系统二次稳定的充分必要条件。
3.
On condition that the nonlinear uncertain functions are bounded,the authors first derive a sufficient condition for robust stability independent of dela,and then provide some sufficient conditions for designing a memoryless state-feedback controller which stabilizes the uncertain neutral system.
主要讨论了一类非线性扰动不确定时滞系统的鲁棒镇定问题。
4) robust stochastic stabilization
鲁棒随机稳定
5) Robust stochastic stability
鲁棒随机稳定性
6) stochastic stability robustness
随机鲁棒稳定性
1.
The stochastic stability robustness of markovian jump linear control systems;
受控马尔可夫跳线性系统的随机鲁棒稳定性
补充资料:随机数和伪随机数
随机数和伪随机数
random and pseudo-randan numbers
随机数和伪随机数【喇间佣1 al川牌”山一喇闭..m.山娜;cJI了,a如曰e”nce,口oc月卿成.以叹“c月a】 数亡。(特别,二进制数:。),其顺序出现,满足某种统计正则性(见概率论(probability Uleory)).人们是这样区别随机数(mndomn切mbe比)和伪随机数(PSeudo一mn由mn切mbe岛)的,前者由随机的装置来生成,而后者是用算术算法构造的.总是假设(出于较好或较差的理由)所得(或所构造)的序列具有频率性质,这些性质对于具有分布函数F(z)的某随机变量心独立实现的一个序列来说是“典型的”;因此人们称作根据规律F(习分布的(独立的)随机数.最经常使用的例子为:在区间【O,l]上均匀分布的随机数亡。,尸(亡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条