1) feature-weighting
特征标权
2) feature weight
特征权值
1.
When feature weight parameters are introduced to the distance formula,the performance will depend on the weight values and accordingly can be improved by adj.
而在距离公式中引入一些特征权值后,其聚类结果将依赖于这些权值,从而可以通过调整这些权值优化聚类效果。
2.
An improved K-means clustering algorithm is proposed,which is based on basic K-means Algorithm,and which choose original clustering centers based on densities and improves clustering effects according to feature weight learning.
本文提出了一种改进的K-均值聚类算法,在基本K-均值算法的基础上运用基于密度选择初始中心点并且通过学习特征权值改进聚类效果,克服了基本K-均值算法初始中心点难以确定、聚类结果不稳定的缺点;然后建立了一种基于改进的K-均值算法的人事管理系统聚类分析模型,本模型采用SQL Server 2000数据库实现并成功运用于国内一家知名软件企业的人力资源管理系统中,为该企业选聘人才和用好人才提供了有益的参考。
3) feature weighting
特征权重
1.
Performance of feature weighting computation directly influences precision of text classification or clustering.
特征权重计算是文本表示的关键,权重计算方法的优劣直接影响文本分类和聚类的准确度。
4) feature weighted
特征加权
1.
Based on the fundamental theory of clustering analysis and fuzzy mathematics,the numerical and attributes characteristic samples of history flood were established,and the characteristic samples were analyzed on a basin by using feature weighted fuzzy clustering algorithm.
基于聚类分析和模糊数学的基本原理,对历史洪水建立属性和数值特征的洪水样本,并运用特征加权FCM算法对流域历史洪水特征样本进行聚类分析。
2.
Feature weighted is the general case of feature selection,which has better performance than(or at least has the same performance as) feature selection.
特征加权是特征选择的一般情况,它能更加细致地区分特征对结果影响的程度,往往能够获得比特征选择更好的或者至少相等的性能。
3.
In this paper,distance metric and feature weighted algorithms have been provided for pretreatment of data which are gathered in the network.
提出以距离度量和特征加权算法为基础,对网络中采集到的各种原始样本参数进行数据预处理,以便为故障诊断提供更加可靠、准确地输入参量。
6) feature weighting
特征加权
1.
Analysis and improvement of feature weighting method TF·IDF in text categorization;
文本特征加权方法TF·IDF的分析与改进
2.
To weaken the effects of blur edges and much noise in infrared images,a novel approach on recognition for infrared images based on Gabor filters and feature weighting is presented in this paper.
针对红外图像边缘模糊、噪声较多的特点,文中提出一种新的基于Gabor滤波器和特征加权的红外图像识别方法。
3.
In this paper we focus our attention on the works in this field, which include four parts: an improved Gabor feature extraction algorithm based on feature weighting, infrared vehicle detection with Gabor filters and Support Vector Machines (SVM), vehicle clas.
包括基于特征加权的Gabor特征抽取算法:基于Gabor滤波器和SVM的红外车辆检测;一种简单的基于Gabor滤波器和边缘特征的车型识别算法:以及实用的基于特定方向的Gabor滤波器组参数设置方法。
补充资料:因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权
因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权:公民、法人的姓名权、名称权,名誉权、荣誉权、受到侵害的有权要求停止侵害,恢复名誉,消除影响,赔礼道歉,并可以要求赔偿损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条