1) optimization of k
K值优化
1.
A preliminary study on the optimization of K value for spatial clustering was realized by a simulation design.
在此提出距离代价函数的概念,建立了相应的数学模型并设计了一个新的K值优化算法,对空间聚类K值优化问题进行了初步的研究。
2.
The performance of the k-means Clustering Algorithm primary depends on the optimization of k.
k-means算法是经常使用的一种聚类算法,但是易受聚类个数k的影响,其性能主要取决于k值优化,因此对近年来k-means算法的研究现状与进展进行总结。
2) optimal k value
最优化k值
1.
This paper establishes the iterative function to calculate the optimal k value in countercurrent extraction.
建立了计算串级萃取最优化k值的迭代函数 :R =c/k +d/(k - 1)。
3) K-L optimization
K-L优化
4) K-optimal
K-优化
1.
This paper addresses a new approach of K-optimal greedy algorithm to show the improvement of selection of pilot buses with the secondary voltage control.
本文提出了中枢节点选择的新方法——K-优化贪婪算法,并以ieee-30节点系统为例进行了案例研究。
5) optimal k-d tree
优化k-d树
6) k-order optimization algorithm
k阶优化算法
1.
The k-order optimization algorithm is also analysed in detail.
本文还详细分析了k阶优化算法,并证明了其近似比为k/(k+1),最后编程模拟了该算法的实现过程,并对结果进行了分析。
补充资料:力学量的可能值和期待值
在量子力学中,力学量F用作用于波函数上的算符弲表示。在数学上,对于一个算符,满足
的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。
在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。
量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开:
在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。
因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。
在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示:
上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为
的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。
在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。
量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开:
在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。
因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。
在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示:
上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条