1) delay integral equation
时滞积分方程
1.
This paper is devoted to a study of the delay integral equations in ordered Banach spacein the form A special case of such equation has been studiedby many authors who used a form of equation ds as the epidemic mod-el.
考虑有序Banach空间中形如的时滞积分方程,给出了这类方程存在正周期解的若干充分条件。
2.
As an application, some existence results of positive almost periodic solutions for delay integral equations are obtained, which generalize the existing results.
应用该定理,给出了一类时滞积分方程的正概周期解的存在性结果。
3.
The existence of solutions for a class of delay integral equations is discussed on the basis of Leray Schander fixed point theorem.
利用 Leray- Schander定理讨论了一类时滞积分方程解的存在
2) Delay-integro-differential equation
时滞积-微分方程
3) delay integral differential equations
时滞积分微分方程
1.
Stability of linear multistep methods for neutral volterra delay integral differential equations;
中立型Volterra时滞积分微分方程线性多步法的稳定性(英文)
4) integrated abstract delay equation
积分抽象时滞方程
1.
In the second chapter, the concept of an integrated abstract delay equation is introduced, and the equivalence of the well - posedness of an integrated delay eq.
在第二章中,引入了积分抽象时滞方程的概念,并且得到积分抽象时滞方程的适定性与相应的积分柯西问题适定性等价。
5) integrating process with time delay
积分时滞过程
1.
Control algorithm applied to an integrating process with time delay based on the Dahlin controller;
基于Dahlin控制器的积分时滞过程控制
6) Retarded differential equation
时滞微分方程
1.
Threepoint boundary value problem for a second order retarded differential equation is investigated and provide sufficient conditions to guarantee that the existence of at least two positive solutionsar obtained.
研究了一个二阶时滞微分方程的三点边值问题,给出了其至少有2个正解的充分条件。
2.
A boundary value problem for semi-linear retarded differential equations with nonlinear boundary condition is studied.
利用变形边界函数法与上下解方法,研究了一类具非线性边界条件的半线性时滞微分方程边值问题,得到了此边值问题解的存在性的充分条件。
补充资料:Abel积分方程
Abel积分方程
Abel integral equation
Abel积分方程【Abel in.雌旧equ硕皿A6eJ.“I.Tef-pa月b.0吧坪朋业服e飞 积分一厅程 i黯*一f(x),、均这个方程是在求解Abel问题(Abel Problem)时推出 的.方‘程 i恶:*二f(x),一“、2)称为广义Abel积分方程(罗neralized Abel irlte『aleqUation).其中a>o,0<,<】是已知常数,厂(x)是已 知函数,而诚x)是未知函数.表达式(x一s)““称为Abel 积分方程的核( kernel)或Abel核(Abel kernel).Abel 积分方程属于第一类v日te皿方程〔Volterra equa- tion).方程 争一里红上-ds_,、x、.。、*、。。3) 么}x一s}- 称为具有固定积分限的Abel积分方程(Abel integral 叫uation with fixed limits). 如果f(x)是连续可微函数,则Abel积分方程(2) 具有唯一的连续解,这个解由公式 sma,d今f(r、dt“、 坦《XI=——,一一川‘日‘曰‘‘‘‘~-叫、,厂 仃ax么(x一t),一“或者、、ina,!。a、今厂,(,、*1 叭戈今二—}一十l一}、J) 万l(x一“)’“么(x一t)’‘’{给出.公式(5)在更一般的假设下给出了Abel方程(2)的解(见【3},[4]).从而证明了(【3]):如果八;。)在区间【ab]一上绝对连续,则Abel积分方程(2)具有由公式(5)给出的属于Lebesgue可积函数类的唯一解关于Abel积分方程(3)的解,见121;亦见{61.【补注】(2)的左边也称为凡emann一Liouville分式积分,其中Re在
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条