1) primary polynomial
准素多项式
2) Quasi-polynomials
准多项式
1.
Stabilization of Second-order Systems with Time Delay Based on Quasi-polynomials;
基于准多项式的二阶时滞系统的稳定性分析
4) quasi-zernike polynomial
准zernike多项式
1.
In the process of adopting quasi-zernike polynomial wavefront fitting method to solution the correction force of the active optics,the result error is big and instability because the quasi-zernike polynomial is not orthogonal.
针对采用准zernike多项式拟和法求主动光学校正力的过程中,因为准zernike多项式的不正交性造成求解误差大、求解不稳定的问题,提出了对准zernike多项式进行householder变换的方法。
5) Standard polynomial
标准多项式
6) coprime polynomial
互素多项式
1.
Through the inquiry into the ranks of coprime polynomial matrices,this paper draws a conclusion: Theorem Let f(x),g(x)∈P?眼x?演 and A∈P n×n,if(f(x),g(x))=1,then n+r?眼f(A)g(A)?演=r(f(A))+r(g(A)).
本文给出了互素多项式在矩阵的秩讨论中的一个简单结果:定理:设f(x),g(x)∈P[x],A是n阶方阵,若(f(x),g(x))=1,则n+r[f(A)g(A)]=r(f(A))+r(g(A))。
2.
The direct sum decomposition of the addition of a linear transformation under the coprime polynomial was given,and it was used in the proof of some equality about the rank of idempotent matrix.
给出了两两互素多项式下线性变换的核的直和分解,并应用于幂等矩阵(对合矩阵)的秩的等式证明中。
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。