1) optimal binary sequences
最优二值序列
2) optimal sequence
最优序列
1.
Based on the dynamic program principle,the optimal sequence of a jeep problem is given.
介绍了吉普问题的由来及发展,在动态规划原理的基础上给出了处理吉普问题的有效工具——最优序列利用最优序列研究了Gale往返吉普问题及其变
3) binary sequence
二值序列
1.
One-way coupled mapping lattice model was first used to generate spatiotemporal chaos binary sequence and each performance of the sequence was analyzed,which proves that the chaos sequence has a good pseudo-randomicity.
首先采用单向耦合映象格子模型产生时空混沌二值序列,并对序列进行各项性能分析,证明混沌序列具有良好的伪随机性。
2.
This paper proposed three-dimensional tent map,which was based on unit cube,analysed the nature of the output sequences,and studied the relativity and balance of the binary sequence generated by the tent map.
提出了单位立方体上的帐篷映射,即三维帐篷映射,分析了该映射输出序列具有的性质,研究了生成二值序列的自相关性与平衡性;并将三维帐篷映射应用于彩色图像加密。
3.
Taking dual chaotic inter-perturbed system as sequence key generator,an improved quantization method for converting chaotic sequence to binary sequence was put forward.
以双混沌互扰系统作为序列密钥发生器,提出一种改进的二值序列量化方法。
4) binary sequences
二值序列
1.
In order to get binary sequences,which are random and sensitive to the initial values,this paper presents an approach of generating extended chaotic sequences based on Bernstein function and interpolation method.
为了得到具有良好随机性和初值敏感性的二值序列,在已有的混沌系统的基础上,利用Bernstein函数,给出了一种基于插值方法构造的广义混沌序列产生方法。
2.
In order to get binary sequences which are randomness,an extended method is presented,which can generate binary chaotic sequences nonlinearly based on chaotic dynamics systems,the sequences is randomness and sensitive to the initial conditions.
为了得到具有良好随机性的二值序列,在已有方法的基础上,介绍了一种改进的混沌二值序列产生方法,该方法以混沌动力学模型为基础,利用非线性的方法产生混沌二值序列,实验表明产生的二值序列具有较好的随机性和初值敏感性,同时通过非线性的比较过程提高了算法的安全性。
3.
An improved chaotic binary sequences algorithm based on one four-dimension chaotic map is proposed.
提出一种基于四维混沌映射产生混沌二值序列的改进算法。
5) optimal subsequence
最优子序列
6) optimal sequence family
最优序列族
补充资料:全局最优值
分子式:
CAS号:
性质:又称全局最优值。最优化问题中从整体考虑求得的最优结果。全局最优点可能不只一个,但全局最优值只有一个。
CAS号:
性质:又称全局最优值。最优化问题中从整体考虑求得的最优结果。全局最优点可能不只一个,但全局最优值只有一个。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条