1) normal basis
正则基
1.
Then its elements are represented by a normal basis,and multiplication operation circuit model is presented in VHDL,which is very suited for use .
文中在给出有限域元素自然基下的表示方法的基础上,推导出了域元素正则基下的表示方法,并给出了正则基下域元素的乘法运算,编写了乘法器的VHDL模型。
2) regular cardinal
正则基数
3) aregular basis
基正则
4) sequence of canonical bases
正则基序列
1.
With some differential operators,this paper finds out sequence of canonical bases which is corresponding with the operators and then discusses the group of polynomial,the group of combined identical equation of binomial theorem and finally discovers some new results: it generates the famous binomial theorem.
本文利用几个微分型算子,找出其对应的正则基序列,然后研讨多项式型、二项式定理型的组合恒等式组,得到一批新结果。
5) infinite regular cardinal number
无限正则基数
1.
Let s be an infinite regular cardinal number, F? be a filter of a set I.
设 为无限正则基数,F为集合I的滤子,通过模的 积和F-积给出了其系数环R相关结构的特征刻画。
6) regular uncountable cardinal
正则不可数基数
1.
Generally, for a regular uncountable cardinal κ, what is the sufficient and necessary condition of GO-space being κ-paracompact? we solved this problem.
早在1 95 4年,Gillman和Henriksen就证明了一个GO-空间是仿紧空间的充分必要条件,那么,更一般地,任给一个正则不可数基数κ,GO-空间是κ-仿紧空间的充分必要条件是什么呢?本文回答了这个问题。
2.
We obtain that under the normality of product of a topological space and a GO-space and the normality of product of the topological space and a regular uncountable cardinal are equivalent.
本文对“每一个GO-空间都是可数仿紧的”这一性质进行了推广,得到了“每一个GO-空间都是
补充资料:反-4-(4-正丙基环己基)苯甲酸-4-正丙基苯基酯
CAS:72928-02-0
分子式:C25H32O2
中文名称:反-4-(4-正丙基环己基)苯甲酸-4-正丙基苯基酯
英文名称:4-(4-propylcyclohexyl)-, 4-propylphenyl ester, trans-Benzoic acid
4-Propylphenyl trans-4-(4-propylcyclohexyl)benzoate
分子式:C25H32O2
中文名称:反-4-(4-正丙基环己基)苯甲酸-4-正丙基苯基酯
英文名称:4-(4-propylcyclohexyl)-, 4-propylphenyl ester, trans-Benzoic acid
4-Propylphenyl trans-4-(4-propylcyclohexyl)benzoate
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条