1) Directional decomposition cellular feature of Chinese character
汉字方向分解网格特征
2) mesh directional feature extraction
网格方向特征提取
4) difference feature point grid
差分特征点网格
1.
In order to enhance the robustness of digital watermarking,to make the system possess the zoom resistance capability and to estimate the zoom resistance degree of the system,a difference feature point grid is constructed,and a zoom resistance embedding and extracting scheme of digital watermarking is designed.
为了提高数字水印的鲁棒性,使数字水印系统具备抵抗缩放攻击的能力,并评价其抵抗缩放攻击的程度,构造了差分特征点网格,设计了抗缩放数字水印嵌入和提取方案,并重点分析了差分特征点网格的抗缩放性能,通过分析待检图像中差分特征点的基点成功检测情况来判定数字水印抗缩放性能。
5) grid feature
网格特征
1.
The two-level neural network character recognition system based on Zernike moment and grid features;
基于Zernike矩与网格特征的两级神经网络字符识别系统
2.
Two effective features,pseudo dynamic feature and grid feature,are selected by comparing the performance of features in off-line signature recognition.
首先通过比较各个特征在离线签名识别中的性能,选取比较有效的平均伪动态特征和中等分辨率网格特征作为识别特征,然后构造了两个K近邻(KNN,K Nearest Neighbor)分类器,对签名图像进行初步识别。
3.
This paper presents a new method of license plate character recognition based on the combination of Zernike moment and grid features.
本文提出了基于Zernike矩特征与网格特征相结合的车牌字符分类方法。
6) characteristic difference scheme with moving mesh
变网格特征差分格式
补充资料:汉字识别特征
汉字识别特征
Chinese character recognition features
汉·295·成败的主要因素。和一般模式特征类似,汉字识别特征可分为统计形式、结构形式和数学形式三类。汉字识别所抽取的汉字特征主要有:粗外围特征、粗网格特征、复杂指数和四边码、笔画密度特征、汉字特征点、短笔段特征、边框和局部特征、部件模板、笔画方向和轮廓特征、网格单元、笔画序列和各种数学变换特征等。这些特征在识别汉字时各有特色,互有优劣,它们可用于粗、细分类中。对汉字识别尚无系统性理论来指导特征的最佳选择,充分考虑汉字结构特点与规律以及识别系统的类型与要求来进行特征的选择是一种可取的方法。下面介绍几种国内外汉字识别系统中常用的汉字特征。 (1)粗外围特征抽取汉字四周轮廓信息作为特征,适用于粗分类。该特征抽取的过程为:先求出文字的外接框,再把PXq点阵文字分割成n只n份,n通常等于8。从文字四框各向相反边扫描,计算最初与文字笔画相碰的非文字部分的面积和全部面积之比作为一次粗外围特征Pl‘(£=1一4n),见图1。再将第二次与文字线相碰的非文字部分面积和全部文字面积之比作为二次粗外围特征尸2、(i二1一4n),形成sn维的粗外围特征向量P p=(尸1一,尸12,…,PI,4,,pZI,p欢,一,pZ,4,) (1) 一次粗外围特征反映了文字轮廓特征,二次粗外围特征在某种程度上反映了文字内部结构。粗外围特征是日本学者首先提出的。首先提出的,主要用于粗分类。 (3)汉字特征点汉字由各种笔画构成,而笔画类型、数目和连接关系可以用笔画骨架线上的端点D、折点Z、歧点Q、交点J表示,见图2。汉字图形的背景(空白)部分,也包含了区别其他汉字的信息,选取若干关键背景点B作为特征,可以有效地区分同类中的其他汉字。这样,汉字特征点t由笔画特征点和背景关键点组成 t={D,Z,Q,J,B}(3) 图2汉字特征点示例 1二端点D;2.‘折点Z;3二歧点Q; 4.★交点几5.0关键背景点B 设T为汉字特征表达式,红是汉字特征点,K是特征点总数,凡是特征点类型(D、Z、Q、J、B),八、yk是特征点在汉字点阵中相对坐标,{八}是特征点其他属性(主要是方向属性)集合,则有T={红}走=1,2,…,Ktk=(凡,几,旅,IPk})(4)┌─┐│/ ││嵘│└─┘ 图1粗外围特征 (2)粗网格特征把加框的Pxq点阵汉字划分为nXn块,n通常等于8,取每块中黑象素数对整个文字黑象素数的比为特征向量的分量,形成护维特征向量M。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条