1) ergodic convergence theorem
遍历收敛定理
1.
Let X be a Banach space, (X,τ) a local convex linear topological space, C a τ-sequence compact convex subset of X, and T an asymptotically nonexpansive mapping with the property (Γ) from C to itself, we give the ergodic convergence theorem for asymptotically nonexpansive mapping under uniformly τ-opial condition.
在一致τ-opial条件下给出了渐近非扩张映照的遍历收敛定理并进行了证明。
2) weak ergodic convergence
弱遍历收敛
3) strong ergodic convergence
强遍历收敛
4) Mean ergodicity
遍历收敛性
5) ergodic theorem
遍历定理
1.
Let X be a Banach space,(X,τ) be a locally convex linear topological space,C a τ-sequence compact convex subset of X,and S an asymptotically nonexpansive type semigroups from C onto itself,this paper gives the ergodic theorem of the almost-orbits for asymptotically nonexpansive type semigroups in Banach space X.
X是一Banach空间,(X,τ)是局部凸线性拓扑空间,C是X上的τ-序列紧凸集,S是C上的Γ类渐近非扩张型半群,在一致τ-Opial条件下给出了半群S的殆轨道u的遍历定理。
2.
If the dimension d =1, then the total occupation time is infinite, and meanwhile an ergodic theorem is given.
若底空间维数d=1,它的全占位时为无穷,同时,强遍历定理成立
3.
Under the locally uniform τ-Opial condition,using product topological net,a new convergence condition of X with locally uniform τ-Opial condition is obtained, and give the ergodic theorem and τ-convergence theorem of the almost-orbits for asympotically nonexpansive typesemigroups in Banach space X are given.
然后利用该收敛条件得到了在局部一致τ-Opial条件下的Γ类渐近非扩张型半群殆轨道的遍历定理以及τ-收敛定理。
6) convergence theorem
收敛定理
1.
The convergence theorem for(H) integral of vector valued function on infinite interval;
无穷区间上向量值函数(H)积分的收敛定理
2.
LSRS Convergence Theorem of Mcshane Integral;
Mcshane积分的LSRS收敛定理
3.
Convergence Theorems of the Choquet Integral;
Choquet积分的收敛定理(英文)
补充资料:Birkhoff遍历定理
Birkhoff遍历定理
Bilkhoff eigodic theorem
Bi浅h甫遍历定理[Bi血h成e吧诚c the峨m;血p以,峥a邓门口的.。旧T.娜限Ma】 遍历理论(erg曲c theory)中最重要定理之一关于具有。有限测度拜的空间X上的自同态T,Birkhoff的遍历定理是指,对于任意函数f任L,(x,群),极限 lrm生咬,了(:*二、一云二、 n神的n人二万(时卿于扫慎(tim“avera罗)或毋热道于挣填(avera罗alonga trajectory))fL乎处处存在(对几乎所有x任x).此外,厂。Ll(x,拌);且若拜(X)<的,则有 夕“一夕d卜关于具有,有限测度料的空间X上的可测流(measura-ble flow)毛不},Birkhoff的遍历定理说,对于任意函数f‘LI(x,时,极限 、十矛(:·)‘一五·,几乎处处存在,且和了有相同的性质. Birkhoff的定理首先由G.D.Birkhoff提出和证明(【1」).接着有各种不同的改进和推广(有一些定理,它们包含Birkho任定理作为特例,还包含j些在概率沦中被称为遍历定理的稍许不同类型的命题(见遍历定理)(ergxlicthcorem);此外,还有关于变换半群的更一般的遍历定理([2】)).Birkhoff的遍历定理及其推广,由于它们考虑的是沿着几乎每一个别轨道所取平均的存在性,因此被称为个体渗巧牢浮(individuale粤心ic‘heorems),以区别于苹甘穆事牢浮(s‘a‘15‘i“1 er网ic‘heorems)一von Neumann澳巧宇浮(von Neumann ergodie‘he-。rem)及其推广.(在非俄文文献中,名词“逐点遍历定理”经常用来强调,平均是几乎处处收敛的.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条