1) nonlinear feedforward neural networks
非线性前馈神经网络
2) Adaptive linear Neural feed-forward decoupling and control
自适应线性神经元网络前馈解耦控制
3) nonlinear neural network
非线性神经网络
1.
A controlling model of the proposed system is then put forward based on nonlinear neural networks,with a neural identifier and a controller being also designed.
为了在保证行车安全的前提下,提高列车的横向平稳性能,提出一种基于天棚原理的列车横向半主动悬挂系统,并建立了半主动悬挂非线性神经网络控制模型,设计了神经辨识器和控制器。
4) Feedforward Neural Network
前馈神经网络
1.
Multi-layer feedforward neural network based on binary ant colony algorithms;
基于二元蚁群算法的多层前馈神经网络
2.
Chaos BP hybrid learning algorithm for feedforward neural network;
前馈神经网络的混沌BP混合学习算法
3.
A new feedforward neural network pruning algorithm;
一种新的前馈神经网络删剪算法
5) feedforward neural networks
前馈神经网络
1.
Newton-gradient coupling algorithm for feedforward neural networks;
前馈神经网络的梯度-牛顿耦合学习算法
2.
Computing Lyapunov exponents with feedforward neural networks;
利用前馈神经网络计算Lyapunov指数
3.
,this paper proposes a new algorithm which combined the advantages of the momentum feedforward neural networks and the traditional CMA blind equalization algorithms,which adjusts the new weight value with the adjusting value used before so that the algorithm could be less sensitive to the stationary point of the error surface.
针对基于前馈神经网络的盲均衡算法中,BP优化算法具有收敛速度慢、易陷入局部极小的缺点,提出了一种新的盲均衡算法,该算法结合动量项前馈神经网络与传统恒模盲均衡算法的优点,将以前权值的调节量用于当前权值的修改过程,降低了算法对于误差曲面局部极值点的敏感性。
6) feed-forward neural networks
前馈神经网络
1.
Application of feed-forward neural networks to dam deformation monitoring based on differential evolution algorithm;
基于差异进化算法的前馈神经网络在大坝变形监测中的应用
2.
Applied to the problem of optimizing the connection weights of the feed-forward neural networks,the algorithm was feasible.
并将该算法用来优化前馈神经网络的连接权值。
3.
On the basis of both adaptive BP algorithm and Newton s method, Quasi Newton algorithm with adaptive decoupled step and momentum (QNADSM) for feed-forward neural networks is derived.
基于输出层函数为线性函数的三层前馈神经网络,结合自适应步长和动量解耦的伪牛顿算法及 迭代最小二乘法导出了一种混合算法。
补充资料:半导体非线性光学材料
半导体非线性光学材料
semiconductor nonlinear optical materials
载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条