说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 实时噪声估计
1)  Real time noise estimating
实时噪声估计
2)  Real-time measurement noise estimation
量测噪声实时估计
3)  time varying noise estimator
时变噪声估计器
4)  noise estimation
噪声估计
1.
Speech enhancement with noise estimation in bark domain;
一种基于巴克域噪声估计的语音增强算法
2.
During the noise estimation,the estimation of its spectrum is updated by tracking the speech-absent frames.
噪声估计过程中通过跟踪带噪语音帧来更新噪声估计。
3.
After capturing theneighborhoods of discontinuity in the image and acquiring their spatial features based on noise estimation,adaptive optimal.
它首先通过噪声估计捕捉图象中可能存在边界的邻域,然后获取邻域中有关边界的空间参数,由此选择最佳微分滤波算子对相应邻域进行滤波,以获取边界点。
5)  Noise estimate
噪声估计
1.
The method can track eigenvalue minima on each eigenvector without any distinction between the speech activity and the speech pause,thus updating the noise estimate throughout the entire signal.
针对传统子空间方法中,采用语音活动检测(Voice activity detection,VAD)估计噪声的缺陷,提出了一种基于子空间域的最小统计噪声估计算法。
2.
When the statistics of noise are changing or signal-noise-ratio(SNR)is low,the noise estimated value by voice activity detection is not exact.
结合语音存在概率对带噪语音协方差矩阵在每个特征向量上的特征值递归平滑得到噪声估计,可以在每一帧内更新噪声特征值。
6)  Estimator of the variation noise
时变噪声统计估值器
补充资料:电力系统实时负荷预测


电力系统实时负荷预测
real time load forecast-ing of electric power system

z(‘)一名a,关(‘)+,(‘)式中f,(t)为负荷时间序列自校正功能的特征函数,由近期负荷历史数据求得;氏为模型参数,也由负荷历史数据求得;F(t)为误差项,假定为白噪声. 谱分析方法能较为精确地描述非平稳随机过程.因此这个模型具有较强的适应天气因素变化的能力,具有较好的预侧精度。谱分析方法要由历史数据的负荷变化余t形成Q矩阵,求解Q矩阵的特征值及特征向量才能求解出特征函数关(·)及参数风,计算t比较大。 (2)鲍克斯一詹金斯模型。利用了时间序列方法,又称ARMA模型.预测负荷的形式为 z(t),Y,(t)+Y(t)式中Y,(t)为正常天气棋式下各小时的负荷分t;Y(t)为附加的残差项.它反映天气模式与正常情况的差别及随机相关效应。在ARMA模型中,残差项可表示为 用山Y(t)一名a.Y(,一i)十艺名勺u.(t一j.)盛一12决·0+习C.W(‘一k) 盛.]式中u.(t)为‘个天气因素的输人,也可为系统中不同地区的天气效应;W(t)为零均值的白嗓声,反映负荷的随机变化,久、bj.、C.及,、n,、m.、H都是模型的参数,是未知常数,都需要由仿真法辨识. 短期负荷预侧及超短期负荷预侧的模型荃本相似,只是在所取历史数据的长短及采样间隔上有所不同。 节点负荷的预测节点的负荷不直接进行预侧。根据各个节点的历史负荷数据统计出两个比例系数:各节点在一天中几个时段的有功负荷与相应时段的系统总有功负荷的比例系数;各节点在一天中几个时段无功负荷与有功负荷的比例系数。由这些比例系数及各个时段系统总有功负荷即可计算出各个节点每个时段的预侧有功负荷及无功负荷。d ronl一x一torlg stl一shl{L{he丫一」ce电力系统实时负荷预测(real time load fore-easting of eleetrie power system)利用电力系统实时信息和历史数据对未来时刻的电力系统负荷进行预测。它是能量管理系统(energyn、anagomontsystem,EMS)中的一项实时功能。一般预测的对象是电力系统总有功负荷及系统中各个节点的有功负荷与无功负荷。 负荷预测的目的与意义对未来的系统负荷情况的预测是制定电力系统运行计划(或称发电计划)的依据。电力系统运行的特点是任何时刻发电机发出的功率必须紧密跟踪系统负荷的需求(包括电力网中的功率损耗及厂用电),以保持电力系统频率恒定。根据预测负荷来制定发电计划.决定机组间的负荷分配、水火电机组的协调、机组起停及与相邻系统间的功率交换等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条