说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 噪声谱估计
1)  noise spectrum estimation
噪声谱估计
1.
A fast adaptive method for noise spectrum estimation is proposed in this paper.
提出了一种快速自适应的噪声谱估计方法。
2.
In this algorithm,a noise spectrum estimation approach by minima controlled recursive averaging is utilized firstly,thus no voice activity detection is needed here,secondly,the occurrence possibility of "musical noise" is reduced by making use of a recursively calculated over-subtraction factor based on sub-band signal-to-noise ratio.
该算法首先利用了一种由最小值控制的递归平均的噪声谱估计算法,因而无需语音端点检测,其次利用一种通过递归计算得到的基于子带信噪比的过减因子,减小了产生"音乐噪声"的可能性。
2)  Noise Power Spectrum Estimation
噪声功率谱估计
3)  noise estimation
噪声估计
1.
Speech enhancement with noise estimation in bark domain;
一种基于巴克域噪声估计的语音增强算法
2.
During the noise estimation,the estimation of its spectrum is updated by tracking the speech-absent frames.
噪声估计过程中通过跟踪带噪语音帧来更新噪声估计。
3.
After capturing theneighborhoods of discontinuity in the image and acquiring their spatial features based on noise estimation,adaptive optimal.
它首先通过噪声估计捕捉图象中可能存在边界的邻域,然后获取邻域中有关边界的空间参数,由此选择最佳微分滤波算子对相应邻域进行滤波,以获取边界点。
4)  Noise estimate
噪声估计
1.
The method can track eigenvalue minima on each eigenvector without any distinction between the speech activity and the speech pause,thus updating the noise estimate throughout the entire signal.
针对传统子空间方法中,采用语音活动检测(Voice activity detection,VAD)估计噪声的缺陷,提出了一种基于子空间域的最小统计噪声估计算法。
2.
When the statistics of noise are changing or signal-noise-ratio(SNR)is low,the noise estimated value by voice activity detection is not exact.
结合语音存在概率对带噪语音协方差矩阵在每个特征向量上的特征值递归平滑得到噪声估计,可以在每一帧内更新噪声特征值。
5)  white noise estimation
白噪声估计
1.
By applying white noise estimation theory in Krein space,a sufficient and necessary condition on the existence of an H∞ fault estimator was derived,and a solution was obtained in terms of matrix Riccati equation.
首先将H∞故障估计问题转化为二次型问题,引入相应的Krein空间系统,然后应用Krein空间白噪声估计理论,得到了问题可解的充要条件,并通过矩阵Riccati方程设计H∞故障估计器。
2.
Based on Kalman filtering and white noise estimation theory, reduced-order Wiener state estimator for a canonical form of descriptor discrete- time stochastic linear systems is proposed by applying modern time series analysis approach.
应用现代时间序列分析方法,基于Kalman滤波和白噪声估计理论,对于广义离散随机线性系统的一种典范型,提出降阶Wiener状态估值器,可统一处理滤波、平滑和预报问题,并且能减少计算负担,便于实时应用。
6)  noise estimator
噪声估计器
补充资料:参数谱估计量


参数谱估计量
spectral estimator, parametric

  参数谱估计量[印ectrai es七n.tor,稗r~tric;eneKTpa-肠n朋0”eHKan叩aMeTP“,ecKa,」 一个平稳随机过程(statfonary stochastic Process)的谱密度〔spectml density)f(劝对应于f(只)的某一确定参数模型(即在此假设下,函数f(劝属于一由有限个参数描述的谱密度的特定族)时的估计量.在求参数谱估计量时,观测数据仅用来计算模型的未知参数.于是估计谱密度的问题就化为估计这些参数的统计问题.实际中应用最广的参数谱估计量是最大嫡谱估计量(一一entropys详ctral estimator),它相应于假定函数【f(劝〕一’是一固定阶数的三角多项式的平方.应用问题中常见的更一般的参数谱估计类是混合自回归滑动平均过程(献ed autoregressivemo-访ng一average Process)模型,即假定f(劝是两个固定阶数的三角多项式的平方之商(见【1]一【3」).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条