1) matrix algebra Riccati equation
矩阵代数Riccati方程
1.
The existence condition and upper and lower bounds estimation of the solution to the equation under the structured uncertainty assumption are presented by applying the operational property of matrix and Lyapunov stability theory, the estimation is then determined by a linear matrix inequality (LMI) and two matrix algebra Riccati equations.
研究摄动离散矩阵Lyapunov方程解的估计问题,利用矩阵运算性质及Lyapunov稳定性理论,给出在结构不确定性假设下方程解的存在条件及解的上下界估计,估计结果由一个线性矩阵不等式(LMI)和两个矩阵代数Riccati方程确定。
2) matrix Riccati equation
矩阵Riccati方程
1.
By applying white noise estimation theory in Krein space,a sufficient and necessary condition on the existence of an H∞ fault estimator was derived,and a solution was obtained in terms of matrix Riccati equation.
首先将H∞故障估计问题转化为二次型问题,引入相应的Krein空间系统,然后应用Krein空间白噪声估计理论,得到了问题可解的充要条件,并通过矩阵Riccati方程设计H∞故障估计器。
3) Riccati matrix equation
Riccati矩阵方程
1.
The definitions and optimization problem of robust stable bounds, as well as the relations between robust stable bounds and the solution of Riccati matrix equation, are studied for a class of systems with nonlinear disturbance.
研究了具有非线性扰动控制系统鲁棒稳定界的定义、优化等问题 ,而且分析了鲁棒控制稳定界与 Riccati矩阵方程解的关系 ,给出了基于 LQ最优控制逆问题参数化解的极大化鲁棒控制稳定界的优化算法 。
2.
The definitions and optimization problem of robust stable bound, as well as the relations between robust stable bound and the solution of Riccati matrix equation, are studied for a class of systems with nonlinear disturbance.
不仅研究了一类扰动控制系统鲁棒稳定界的定义、优化等问题 ,而且通过研究控制系统鲁棒稳定界与Riccati矩阵方程解的关系 ,提出了在闭环极点约束条件下研究鲁棒稳定界的方法 ,并给出了基于LQ逆问题参数化解的极大化鲁棒稳定界的优化算法 。
3.
Solving linear and nonlinear matrix equations such as the Lyapunov matrix equation and the Riccati matrix equation is one of important topics in the fields of numerical algebra and nonlinear analysis.
Lyapunov矩阵方程和Riccati矩阵方程等线性和非线性矩阵方程足数值代数和非线性分析中研究和探讨的重要课题之一。
4) algebraic Riccati equation
代数Riccati方程
1.
A robust H-infinity control scheme of output feedback based on an algebraic Riccati equation was presented to stabilize the closed loop system.
基于代数Riccati方程方法,提出了H∞鲁棒输出反馈控制方法,以使系统闭环控制稳定。
2.
By means of the positive-definite solutions of algebraic Riccati equations,the robust H ∞ dynamic output feed-back controller is constructed,under which the closed-loop systems are of internal stability and reduce the H ∞ norm of the trans-fer function from the disturbance to the controlled output to a prescribed level for all admissible uncertainties and all positi.
通过代数Riccati方程的正定解,给出了全维鲁棒H∞动态输出反馈控制器的设计,使得相应的闭环系统对一切时滞和所有允许不确定参数保持内稳定,并且闭环系统从扰动受控输出之间传递函数H∞范数不大于已知给定的指标值。
3.
In a large multihop sensor network,the controllers and the plants usually communicate via unreliable wireless channels,and the algebraic Riccati equation is modified because of the random packet losses.
在传感器网络中,控制器与被控对象通过不可靠无线网络通信,因此代数Riccati方程由于通信链路的随机丢包产生了新的参数。
5) Riccati algebraic equation
Riccati代数方程
6) algebraic Riccati equations
代数Riccati方程
1.
The solution to local controllers is carried out merely by iteratively solving a set of local algebraic Riccati equations.
局部控制器的求解只需递推地利用一系列局部代数Riccati方程 。
补充资料:矩阵代数
矩阵代数
matrix algebra =?algebra of matrix
矩阵代数[.吮习州俪或algebra of rnatrix;MaTp朋~6Pal 域F上所有nxn矩阵的全阵代数凡的一个子代数,F。中运算定义如下: 又a=IIAatj II,a十b=IIa。十b。小 a白一e一}一e。一l,e。一艺a‘,b,,, v一】其中长F,且a二{Ia洲,b=}}气}}〔凡.代数凡同构于F上一个n维向量空间的所有自同态的代数.F。在F上的维数等于陀2.每个有恒等元且在F上的维数不大于n的结合代数(见结合环与结合代数恤洛。c血ti记nn矛即d al罗bn巧”同构于凡的某个子代数.无恒等元且在F上的维数小于n的结合代数也可同构地嵌人凡.根据认乞记erb让团定理(Wedde比UrntheO~),代数凡是单的,即它仅有平凡的双边理想.代数凡的中心由F上所有n xn纯量矩阵组成.F。的全部可逆元的群是一般线性群(罗n巴司】」n既叮g旧uP)GL(。,F).凡的每个自同构(autoTnorphism)h都是内自同构: h(x)=txr一’,x任F。,t〔GL(。,F). 每个不可约矩阵代数(亦见不可约矩阵群(诉比u.cible宜以tr认gro叩))是单的.如果矩阵代数A是绝对可约的(例如,如果F是代数闭的),则当n>1时A=凡(B~ide定理(Bun招ide th幻m)).矩阵代数是半单的,当且仅当它完全可约(亦见完全可约矩阵群(com-Pletely一代过那脉nla川xgro叩)).不计共扼时,凡含唯一的极大幂零子代数—所有对角线元素为零的上三角矩阵构成的代数.凡有r维交换子代数,当且仅当 f”21 :、L丁」十‘(Schl江定理(Schur U工幻~)).在复数域C上,C。的极大交痪手代数的共扼类的集合在。<6的情形下是有限的,而当n>6时是无限的. 在凡中有Zn次标准恒等式: 艺(s,a)x。(:)…x。(2。)=o, 口‘52-其中又。表示对称数(s”血减rix grouP),sgn‘是置换6的符号,但没有次数更低的恒等式.[补注]F。常用的记法是M。(F)· 半单环结构的节几山韭比urn定理:半单环R是体兀上全阵环M。,(F‘)的一个有限直积,反之,每个这种形式的环是半单的.此外,F‘和”,均由R唯一决定. W曰derburn一Arijn定理(从b泪erburn一AItinth(泊-记m):右AI七n单环是一全矩阵环(E.Adin,1928;J.H.M.认傲泪鹿bum在1卯7年对有限维代数作了证明).此定理的深远推广是Jaco比on稠密定理,见结合环与结合代数(assocla石记n翔罗aildal罗bras)及【Al].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条