1) Locally wiener filter
局部维纳滤波器
2) local wiener filtering
局部维纳滤波
1.
This paper proposes a local wiener filtering image denoising method using Canny operator in wavelet domain.
本文给出了一种利用Canny算子的小波域局部维纳滤波的图像去噪方法。
3) Doubly local Wiener filtering
双重局部维纳滤波
1.
Image denoising algorithm via doubly local Wiener filtering with windows based on SWT and DTCWT;
一种加窗的双重局部维纳滤波图像去噪算法——基于SWT和DTCWT
2.
A wavelet-based image denoising algorithm via doubly local Wiener filtering with adaptive windows is presented.
提出了一种利用自适应窗的小波域双重局部维纳滤波图像去噪算法。
4) Local directional wiener filtering
局部有向维纳滤波
5) Wiener filter
维纳滤波器
1.
Describes a simple and effective Wiener filter and adopts it to filter digitized X-ray images.
介绍了一种简单有效的维纳滤波器设计过程,并采用该过程对数字化X射线影像进行滤波,试验表明:维纳滤波器能在去除图像噪声的同时较好地保留图像细节,具有实际应用价值。
2.
At first, the de-noising pretreatment was carried out for image signal through the transcendental Wiener filter in wavelet field.
先通过小波域上的先验维纳滤波器对图像信号进行去噪预处理。
3.
On the basis of WienerChop algorithm, an improved Wiener filter in wavelet domain is proposed.
在WienerChop算法的基础上,提出了一种改进的小波域维纳滤波器,在小波域采用基于贝叶斯估计的小波阈值去噪技术估计期望信号,提高估计的精度,并以此设计经验维纳滤波器;进一步适当选择多小波基,使每个基函数通过小波变换能够比其他小波基更好地捕捉信号的某些特定特征,从而实现WienerChop算法的迭代。
6) Weiner filter
维纳滤波器
1.
FIR digital filtering, discrete Weiner filtering and wavelet denoising algorithm are applied to reduce noise of test signal,and the virtues and defects of three methods are compared.
应用FIR数字滤波方法、离散维纳滤波器方法及小波消噪算法对测试信号进行消噪处理并比较了3种方法的优缺点。
2.
In this paper we have completed a DSP-based design of adaptive LMS Weiner filter,and realized to decrease noise in digital image processing.
本文完成了一种基于DSP的自适应LMS维纳滤波器的设计,从而实现了对数字图像进行初步降噪处理。
补充资料:维纳滤波
利用平稳随机过程的相关特性和频谱特性对混有噪声的信号进行滤波的方法,1942年美国科学家N.维纳为解决对空射击的控制问题所建立。维纳滤波是40年代在线性滤波理论方面所取得的最重要的成果。
滤波问题 用x(t)表示信号的真实值,n(t)表示噪声,其中t表示时间,则实际上观测到的信号是
z(t)=x(t)+n(t)滤波就是要从实测信号z(t)中尽可能滤掉噪声n(t),以得到真实信号x(t)的良好估值。数学上,滤波问题可以归结为根据z(t)来求出x(t)的最优估值憫(t)。
维纳滤波中,最优估值憫(t)是在均方误差的数学期望E[x(t)-憫(t)]2取极小意义下的一种估值。在假定信号过程x(t)与噪声过程n(t)为联合平稳和假定在半无限时间区间(-∞,t)内能获得z(t)的全部观测数据的前提下,维纳滤波给出了计算最优估值憫(t)的一种方法。
维纳滤波器 实现维纳滤波方法的系统或装置称为维纳滤波器。维纳滤波器在结构上是一个定常线性系统(见图),通过合理的设计可使其对噪声n(t)具有良好的过滤特性。当观测信号z(t)=x(t)+n(t)输入滤波器时,它的输出就是信号x(t)的最优估值憫(t)。
构造维纳滤波器的步骤 假设维纳滤波器的单位脉冲响应函数是h(t),则最优估值憫(t)的关系式为
如用Rxz(τ)表示x(t)和z(t)的互相关函数,Rzz(τ)表示z(t)的自相关函数,那么业已证明它们之间具有类似于上式的关系式
这个关系式称为维纳-霍夫方程。如果所讨论的各随机过程均具有各态历经性,则式中的Rxz(τ)和Rzz(τ)均是已知的。设计维纳滤波器的问题,可归结为从维纳-霍夫积分方程中解出未知函数h(t)。h(t)的拉普拉斯变换就是所要决定的维纳滤波器的传递函数H(s)。对于一般问题,维纳-霍夫方程往往不易求解。但当给定问题的随机过程的功率谱密度是有理分式函数时,H(s)的显式解就可比较容易地定出。根据求得的H(s)即可构造所需的维纳滤波器,而信号的最优估值憫(t)则可由相应关系式定出。
维纳滤波器的优缺点 维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声n(t)为非平稳的随机过程的情况,对于向量情况应用也不方便。因此,维纳滤波在实际问题中应用不多。
参考书目
钱学森、宋健:《工程控制论》(下册),科学出版社,北京,1981。
Y.W.Lee, Statistical Theory of Communication, John Wiley and Sons,Inc.,New York,1960.
滤波问题 用x(t)表示信号的真实值,n(t)表示噪声,其中t表示时间,则实际上观测到的信号是
z(t)=x(t)+n(t)滤波就是要从实测信号z(t)中尽可能滤掉噪声n(t),以得到真实信号x(t)的良好估值。数学上,滤波问题可以归结为根据z(t)来求出x(t)的最优估值憫(t)。
维纳滤波中,最优估值憫(t)是在均方误差的数学期望E[x(t)-憫(t)]2取极小意义下的一种估值。在假定信号过程x(t)与噪声过程n(t)为联合平稳和假定在半无限时间区间(-∞,t)内能获得z(t)的全部观测数据的前提下,维纳滤波给出了计算最优估值憫(t)的一种方法。
维纳滤波器 实现维纳滤波方法的系统或装置称为维纳滤波器。维纳滤波器在结构上是一个定常线性系统(见图),通过合理的设计可使其对噪声n(t)具有良好的过滤特性。当观测信号z(t)=x(t)+n(t)输入滤波器时,它的输出就是信号x(t)的最优估值憫(t)。
构造维纳滤波器的步骤 假设维纳滤波器的单位脉冲响应函数是h(t),则最优估值憫(t)的关系式为
如用Rxz(τ)表示x(t)和z(t)的互相关函数,Rzz(τ)表示z(t)的自相关函数,那么业已证明它们之间具有类似于上式的关系式
这个关系式称为维纳-霍夫方程。如果所讨论的各随机过程均具有各态历经性,则式中的Rxz(τ)和Rzz(τ)均是已知的。设计维纳滤波器的问题,可归结为从维纳-霍夫积分方程中解出未知函数h(t)。h(t)的拉普拉斯变换就是所要决定的维纳滤波器的传递函数H(s)。对于一般问题,维纳-霍夫方程往往不易求解。但当给定问题的随机过程的功率谱密度是有理分式函数时,H(s)的显式解就可比较容易地定出。根据求得的H(s)即可构造所需的维纳滤波器,而信号的最优估值憫(t)则可由相应关系式定出。
维纳滤波器的优缺点 维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声n(t)为非平稳的随机过程的情况,对于向量情况应用也不方便。因此,维纳滤波在实际问题中应用不多。
参考书目
钱学森、宋健:《工程控制论》(下册),科学出版社,北京,1981。
Y.W.Lee, Statistical Theory of Communication, John Wiley and Sons,Inc.,New York,1960.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条