说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 最优轨线方程
1)  optimal trajectory equations
最优轨线方程
2)  Optimal trajectory
最优轨线
1.
The own ship deterministic optimal and suboptimal trajectory equations as well as optimal trajectory of bearing-only systems locating and tracking had given at target arbitrariness variable speed and variable course motion or fixed.
给出了纯方位系统在目标任意变速变向运动或不动情况下,目标定位与跟踪中的本载体确定性控制最优和次优轨线方程以及其最优轨线。
2.
WT5”BZ]The problem of the optimal trajectory has been mentioned in the document [1] .
文献[1] 已讨论了最优轨线问题 ,本文将讨论最优轨线变分的问
3)  optimality equation
最优方程
1.
The optimality equations for the model are extablished.
给出相应的最优方程,证明了确定性ε最优策略的存在性,最后得到求ε最优策略的算法并证明了该算法的有效性。
2.
In this paper, a non-stationary discounted Markovian Decision model with unbounded rewards is investigated, in which the discount factor β_t is dependent of the state and the action taken before last step of the system, under some assumptions, the optimality equations are established, and the existence of an ε-optimal policy is proved.
讨论了无界报酬非时齐折扣马氏决策模型,且折扣因子βt依赖于前一阶段所处的状态和采取的行动,从而推广了常数折扣因子的马氏决策模型,在一定的假设下,得到了最优方程,证明了存在ε-最优马氏策略。
4)  the best multiple linear regression equation
最优多元线性回归方程
5)  optimality equation
最优性方程
1.
Based on a potential approach,the optimality equations satisfied by the optimal stationary policies are derived.
基于性能势方法,导出了由最优平稳策略所满足的最优性方程。
2.
By applying the transformation of the SMP to the discrete-time Markov chain(DTMC),the potential of the DTMC is used to obtain the sensitivity formula and optimality equation of SMP.
将SMP转化为与之等价的离散时间Markov链 (DTMC) ,利用DTMC的性能势 ,对SMP进行灵敏度分析和性能优化 ,得到了SMP基于DTMC性能势的灵敏度分析公式和最优性方程 。
3.
Under a general assumption, we establish directly the optimality equation for infinite time horizon average cost model and prove the existence of optimal solution in a compact action set by using p.
在一般的假设条件下 ,我们应用性能势的基本性质直接建立了无限时间水平平均代价模型的最优性方程 ,并且证明了在紧致集上最优解的存在性 。
6)  optimal Mequation
最优M-方程
补充资料:黎卡提方程(见线性二次型量优控制)


黎卡提方程(见线性二次型量优控制)
Riccati equation

L袱以}tongcheng黎卡提方程(Rieeati equation)次型最优控制。见线性二
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条