说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 回归变点
1)  regression change-points
回归变点
2)  recurrence point set
回归点集
3)  chain recurrent point
链回归点
1.
In this paper, the concepts of chain recurrent points and ω-limiting points on real segment is generalized to metric space.
主要将实线段上连续自映射的链回归点和ω-极限点推广到了度量空间。
2.
Let f be a continuous self-map of a tree T with n end points and every point of T be a chain recurrent point of f.
设f是端点数为n的树T上的连续自映射且T上的每一点都是f的链回归点。
3.
For a continuous map of tree or graph to itself, we show the properties that every isolated chain recurrent point is an eventually periodic point, and an isolated chain recurrent point which is not in the orbit of a critical point and has no critical point in its orbit is a periodic point.
对树或图上的连续自映射,本文证明了孤立链回归点是最终周期点,如孤立链回归点不在临界点的轨道中且它的轨道中也不含有临界点,则它还是周期点。
4)  pointwise recurrent
逐点回归
1.
Secondly,the pointwise recurrent Warsaw circle maps are the identity map and that h_A(fg)=h_A(gf) for each increasing sequences of positive integers A.
设W为一个华沙圈,f为W到其自身的连续自映射,本文主要研究f的一些动力学性质,首先证明了f是传递的当且仅当f是D evaney混沌;其次证明了逐点回归映射是恒等映射;最后,得到华沙圈上拓扑序列熵具有交换性。
5)  nonrecurrent point
非回归点
1.
There is nonrecurrent point in the double inverse limit space.
研究了非空紧致度量空间上连续映射f:X→X,g:X→X的双重逆极限空间上移位映射σf*σg:lim←(X,f*g)→lim←(X,f*g)的一些性质:移位映射σf*σg的周期点集等于f*g的周期点集上的双重逆极限空间;X中有非回归点当且仅当双重逆极限空间中有非回归点;双重逆极限空间的终于周期点一定是周期点。
6)  recurrent point
回归点
1.
Some properties of almost periodic points, recurrent points and chaotic sets in symbolic dynamical systems are given.
本文讨论了符号动力系统的几乎周期点、回归点及混沌集。
2.
There arc many fundamental theorems in topological dynamics concerning period, almost periodic point, recurrent point, ω - limit point, orbit closure, the relationships betwwen f and f~p and transitive map etc.
拓扑动力系统理论中有许多基本定理,涉及到周期,几乎周期点,极小集,回归点,ω-极限点,轨道闭包,f与f~p的关系及可迁映射等。
3.
Generalized periodic point of continuous self-mapping, such as recurrent point, nonwandering point, chain recurrent point, is one of the most important researches of topological dynamical system.
连续自映射的回归点、非游荡点、链回归点等广义周期点是拓扑动力系统的重要研究内容之一。
补充资料:换热问题夹点跳变
分子式:
CAS号:

性质: 对于包含不定参数的换热网络柔性设计问题,它的夹点并非固定不变的。夹点的位置必定在某股物流的进口温度处。如果不定参数的变化使夹点位置从某一物流的进口温度变为另一物流的进口温度,则称为夹点跳变;如果夹点温度变化但位置不变,则不属于夹点跳变。夹点跳变常常会导致换热网络操作不正常。在换热网络柔性设计问题中,必须首先分析夹点随不定参数变化的情况。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条