1) generalized Liapunov function
广义Liapunov函数
2) Liapunov function
Liapunov 函数
3) Liapunov functions
Liapunov函数
1.
Through constructing Liapunov functions,and using some stability theorems,the global asymptotic stability of solutions for a class of fourth-order differential equations is proved,and some results of document [1] and [2] are extended.
通过构造Liapunov函数,并利用有关微分方程解的稳定性的若干结果,证明了一类四阶非齐次微分方程解的全局渐近稳定性,从而推广了文献[1-2]的结果。
2.
For stability problem of null solution of a nonlinear system,firstly, this paper adopts linear analogy method to transform nonlinear systems into linear systems,and then constructs Liapunov functions,finally,proves the stability of null solution.
对于一类非线性系统零解的稳定性问题,本文采用线性类比法,将非线性系统形式转化为线性系统,构造出Liapunov函数,从而判定该非线性系统零解的稳定性。
4) Liapunov's function
Liapunov函数
5) Liapunov function
Liapunov函数
1.
And the relevant sufficient conditions are established and proved by the impulse comparision theorem and Liapunov function.
通过对捕食者引入脉冲投放拓展了传统的Lotka-Volterra捕食-食饵模型,考虑了一个在脉冲干扰下具有Holling 功能反应的三种群捕食-食饵系统的持续生存性,建立了相应的充分条件,并利用脉冲比较原理及Liapunov函数加以证明。
2.
The method of Liapunov function is used to study the connective set-stability of large discrete systems with respect to the partial variables.
利用Liapunov函数方法,对离散大系统关联集合稳定性进行了研究,得到了更宽松条件下更好的稳定性结果,给出了3个有意义的基本定理。
3.
In this paper, the existence and uniqueness of almost periodic solutions for some nonlinear differential equation systems are studied by using the method of constituting Liapunov function.
应用构造Liapunov函数方法,讨论了非线性微分方程系概周期解的存在唯一性。
6) Liapunov Functional/function
Liapunov泛函/函数
补充资料:广义殆周期函数
广义殆周期函数
generalized almost - periodic functions
广义殆周期函数「gen日,“别月aln扣成一碑该浦c五11州匆留;0606川e。。‘e no,,ne,IO皿”,eC蕊”e中yl压啊] 殆周期函数的各种推广所成的函数类.其中的每一类都推广了Bd叮殆周期函数(Bohra】n】ost一详石记沁几川c山ns)和压对四犷殆周期函数(E幻chnera】111斑t~p叮.iedic hlllctio留)的某些方面.下述数学概念(结构)出现在助hr与R刃加er殆周期性的定义中:l)定义在整个直线上的连续函数空间,可视为以 p伍g}一量缪}f(x)一g(x)l(*)为距离(曲臼叮ce)的度量空间;2)直线R,到复平面C,中的映射(函数);3)直线R,作为一个群;4)直线Rl作为一个拓扑空间. 殆周期函数的现有推广能依据这些结构方便地予以分类. l)如果代替连续性,要求函数f(x)(x 6RI)在每个有界区间上是p幂可积的可测函数,则如下三种表示式可取作距离: C代11阳oB距离( StePanov曲栩叮ce) 一伍。,一::时‘}f(x卜。(x)}咐’气 M阳贝距离(俄叨曲扭nce) ,附·{f,g}二,噢几。抓g}; 跳icovi匕h军亭(腼covitehdis~)、 Pa,抓。卜{、责I}f(x)与。尸dx}伙 相应于这些距离,可以有广义oen.毗.殆周期函数(StePanova】nl招t一讲垃劝记丘m ctio斑),广义W娜殆周期函数(W己yla」m璐t一详行浏c ftmctions)和广义肠翻政雨权为殆周期函数(B留ico访teh aln篮招t一详石阅记丘mc-tio璐). 2)假设直线R,不是映到c’,而是映到一个加现ch空间B.这样的映射称为抽象函数(咖。习以丘mctjon).假设抽象函数是连续的,并且它们之间的距离由式(,)定义,但其中的模用范数代替,则BOhr与且犯加℃r的定义可被推广并且导致所谓抽象殆周期函数(a忱你双t目n幻 st一沐次劝c ftm etio璐). 进一步的推广是以拓扑向量空间代替助朋ch空间获得的.在此情形下,对零元的每个邻域U,实数:=丁。称为f的U殆周期(U一习m璐t一详nod),如果对一切x任R,有f(x+:)一f(x)任U. 若用弱拓扑代替范数拓扑,则可得到所谓弱殆周期函数(城汕a】11】阴t一详对浏记丘mctions):函数f(x)(x‘R’,f任B)称为弱殆周期的,如果对任意泛函职任B’,函数毋仃(x))是数值殆周期函数. 3)假设用一个抽象群〔不必是拓扑群)G代替直线Rl,并考虑G到一拓扑向量空间(特别地,到C,)中的映射f(x),xeG.采用,又加盯的定义作为殆周期函数的定义是方便的:f称为群G上的殆周期函数(创的1万t一详滋汕cft川c加n on the 9.叩),如果函数族f。h)(h〔G)(或等价地,函数族f(hx))关于G上的一致收敛性是条件紧的(见群上的殆周期函数(a玩嗡t-详d记元几汉石。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条