说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分层树集合分割排序
1)  SPIHT
分层树集合分割排序
2)  SPIHT (Set Partitioning in Hierarchical Trees)
SPIHT(分层树集合排序)
3)  set partitioning in hierarchical tree
多级树集合分割
1.
For compressing historical data on chemical process and reducing data storage, a new compression method based on integer wavelet transform and set partitioning in hierarchical trees was proposed.
该方法基于整数小波变换和多级树集合分割,对原始数据进行5层整数小波分解,得到小波系数和相应的时间方向树,使用多级树集合分割编码对小波系数进行编码,输出位平面,再利用自适应算术编码对输出的位平面进行编码,进一步提高压缩比。
4)  set partition in hierarchical trees(SPIHT)
基于层次树的集合分割(SPIHT)
5)  Three dimension set partitioning in hierarchical tree(3D-SPIHT)
三维层次树集分割算法
6)  partially order sets(POSET)
部分排序集合(POSET)
补充资料:集合的变分


集合的变分
variation of a set

集合的变分[var加石佣or a set;。ap一a。“,Moo袱ee-T.aJ 表征n维Euclid空间中一个集合的k维容度的数值.有界闭集E的零变分叭,(E)是该集合的分量数. 在最简单的平面情形,一个集合E的线性变分(haear variation of a set)(即E的一阶变分)是函数 。(:,:)一丁:.,(:门n户:)、: n的积分 2兀 。,(:)一。丁。(:,:)比二, O其中n。是过坐标原点的直线,“是n。与给定轴之交角,n户:是n。上点:处的垂直线,规范化常数C的选择是使一个区间E的变分V,(E)等于它的长度.对于十分简单的集合,例如可求长曲线,其变分就是它的长度(lellgl」1).对具有可求长边界r的闭域E,其线性变分V,(E)等于r长度的一半;E的第二变分(即E的二阶变分)是E的二维测度,且V*(E)二0,人>2 在儿维EuClid空间中,有界闭集E的k=O,…,凡阶变分V*(E)(variationV*(E)of order)是,£与空间O公(R”中所有(n一k)维平面)中(n一k)维平面口的截口的零变分关于Haar测度(Haar~-sure)d拜,的积分 :*(:)一了、。(:。,)己。,; 。又这里,规范化条件为:对k维单位方体J、,其变分V*(J*)=1. 变分V。(E)恒同于集合E的n维玩besg此测度(玩besgue measure).对于凸体,其集合之变分(适当规范化)恒同于Minkowski的混合容积(见混合体积理论(献ed一铂lufrr胶ory))([4]). 集合变分的性质(pro讲rties or阮var‘tions ofa set):1)EC=R”C=R’‘的变分与对EC=R”和EC=r‘所计算的有相同的容积. 2)一个集合的变分可归纳地表达为公式[补注]亦见容度(content)和函数的变差(variationof a funetion).周民强译J:.(:。刀)叮。。一。(。,、,,)F**,(:),、+‘、n,‘泣之其中c(n,k,f)是规范化常数. 3)V‘(E)二o蕴含V,+,(E)=0. 4)在一定意义下,一个集合的各种变分是互不相关的,即对任一数列a。,…,a。,其中“。是正整数,0一般情况,是 V‘(E,日EZ)簇V.(E:)+V,(EZ). 对i=0,…,n一1,变分V:不是单调的,即对E,。EZ,有可能使得V,(E:)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条