1) matrix volume measure
矩阵体积度量
1.
Two dimensional PCA using matrix volume measure in face recognition;
基于矩阵体积度量的二维PCA人脸识别(英文)
2) matrix volume
矩阵体积
1.
The emphase of this paper is to study the defination and properties of matrix volume,it suggested that .
矩阵体积的概念与高维欧氏空间几何学中平行多面体的体积和高维勾股定理相关,也与矩阵代数中向量空间理论有着密切的联系,鉴于此,本文首先对Hilbert空间几何学进行了简要的介绍,在此基础上引入n维欧氏空间,并结合大地测量中的几个具体问题进行了初步的探讨。
2.
Based on the conception of the matrix volume,we presented the definition of the orthogonal degree of the matrices,generalized and extended the determinant method mentioned above.
基于矩阵体积的概念,引入矩阵向量正交度,对病态问题的行列式诊断方法进行了推广和扩展。
3) induced matrix
度量矩阵
1.
Through analyzing relation judgment matrix, consistency matrix, induced matrix and measure matrix, A Accelerating Method to Rectify a Judgment Matrix on AHP through Intersecting of Measure Matrix and Induced matrix is put forword.
本文通过分析判断矩阵,一致性矩阵,导出矩阵及度量矩阵的关系,提出一种用度量矩阵和导出矩阵交叉加速修改AHP中的判断矩阵。
2.
Through analyzing relation judgment matrix, consistency matrix,induced matrix and measure matrix, a prediction accelerating greedy algorithms to rectified element is put forword.
通过分析判断矩阵 ,一致性矩阵 ,导出矩阵及度量矩阵的关系 ,提出一种修改判断矩阵的预测加速修正的贪婪算法 。
3.
Through analyzing relation judgment matrix ,consistency matrix,induced matrix and measure matrix,a prediction accelerating method to rectified element is put forword.
通过分析判断矩阵、一致性矩阵、导出矩阵及度量矩阵的关系,提出一种修改判断矩阵的预测加速修正法。
4) measure matrix
度量矩阵
1.
The equality of eigenvalue of departure matrix,judgement matrix and measure matrix,and the relation of their eigenvector are introduced.
阐述了判断矩阵、度量矩阵及偏离矩阵的特征值相同性以及它们的特征向量的关系。
2.
By researching the symmetric transformation,measure matrix and orthogonal matrix, we obtain the relation system among the real symmetric matrix, the diagonal matrix and the orthogonal basis of n-dimensional Euclidean space.
利用特征值、特征向量、正交化等概念,通过欧氏空间中的对称变换、度量矩阵、正交矩阵,证明了实对称矩阵、对角矩阵以及欧氏空间的规范正交基之间内在的,虽非唯一性、而却是本质性的对应关系。
6) cumulant matrices
累积量矩阵
1.
The parameters can be estimated from the process of cumulant matrices which are formed using state-space realization approach.
算法采用类似状态空间的方法构造信号输出累积量矩阵 ,而近场源频率、DOA和距离的估计通过对该输出矩阵的分解处理得到。
补充资料:可公度量和不可公度量
可公度量和不可公度量
ommensulble and incommensuable magnitudes (quantities)
可公度t和不可公度t【~e璐u由lea目in~men-su.ble magultodes(quanti柱es);“洲口Mel娜M毗“”“”-113Mep目M曰e肠eJ皿,一皿曰』 如果两个同类量(例如两个长度或两个面积)具有或不具有公度(common measure,即另一个同类量,所考虑的两个量都是这个量的整数倍),则相应地称这两个量为可公度量或不可公度量.正方形的边长和对角线,或圆的面积和丫的半径的平方,都是不可公度量的例尹.如果两个量是可公度的,则‘l艺们的比是有理数;相反,不可公度量忿比是无理数、
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条