1) support vector classifiers ensemble
支持向量分类器集成
2) support vector classifier
支持向量分类器
1.
To solve the problem of the low sampling efficiency in the contentbased information retrieval, a new classifier named 15-class support vector classifier (15 SVC) is proposed.
针对基于内容的信息检索中负样本抽样效率低的问题,设计了1 5类支持向量分类器。
2.
To improve the speed and the problem of high false positive in micro-calcification detection,a novel micro-calcification detection method based on support vector classifier model with rejection feature and Iterative Rank-order Filter Subspace is proposed.
对于输入模式,首先利用基于最大软间隔超平面的支持向量分类器(SVC)进行分类判决;然后对真实的钙化点样本特征空间求取最小的包含球形边界,得到钙化点样本的球形支持向量域表示(SVDD)。
3) support vector classifier(SVC)
支持向量分类器
1.
Firstly the first layer of support vector classifier(SVC) with maximum margin between two classes will be used for classifying the input pattern;then the sphere support vectors of true micro-calcification points to describe the distribution of the sample were obtained by searching all the sphere boundaries containing the samples of this class.
检测时,首先利用基于最大间隔超平面的支持向量分类器(SVC)对输入模式进行分类判决;然后通过求取真实钙化点样本特征空间最小的包含球形边界来得到钙化点样本的球形支持向量域表示(SVDD);接着利用钙化点的支持向量域表示对输入模式进行拒识或接受处理;最后利用SVC与SVDD两个分类器的结果来进行综合判决。
4) Support Vector Machine(SVM) multi-class classifier
支持向量机多类分类器
5) Multi-class Support Vector Classifier
多类支持向量分类器
6) support vector domain classifier
支持向量域分类器
1.
Support vector machines(SVM) take very long time in training and support vector domain classifier(SVDC) has the disadvantage of low accuracy in binary classification problem.
针对两类分类问题中使用支持向量机(Support Vector Machines,SVM)训练时间长和支持向量域分类器(Support Vector Domain Classifier,SVDC)精度不高的问题,建立一种基于支持向量域描述(Support Vector Domain Description,SVDD)的分离超平面,尝试将SVDD与SVM结合。
补充资料:支持向量机方法
支持向量机(SVM)是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。支持向量机算法是一个凸二次优化问题,能够保证找到的极值解就是全局最优解,是神经网络领域域取得的一项重大突破。与神经网络相比,它的优点是训练算法中不存在局部极小值问题,可以自动设计模型复杂度(例如隐层节点数),不存在维数灾难问题,泛化能力强。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条