说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 噪声独立分量分析
1)  noise ICA
噪声独立分量分析
1.
In order to remove the bias,a noise ICA algorithm based the noise model is introduced and the multi-user detection method based this algorithm is deduced.
针对独立分量分析算法忽略噪声这一缺点,引入基于噪声模型的噪声独立分量分析,得到基于噪声独立分量分析的多用户检测方法。
2)  Noisy Independent Component Analysis
噪声独立成分分析
3)  NoisyICA
带噪独立分量分析
4)  Signal and noise separation of independent component an
独立分量分析的信噪分离
5)  independent component analysis
独立分量分析
1.
Extraction of the Characteristics of the Acoustic Emission Signals of the Pitting of Low Carbon Steel Based on Independent Component Analysis and Wevelet Transform;
基于独立分量分析和小波变换的低碳钢点蚀声发射信号特征提取
2.
Signal Processing of Acoustic Emission of Metal Corrosion Based on the Independent Component Analysis;
基于独立分量分析的金属腐蚀声发射信号处理
3.
Noise removal of pulse wave signal based on independent component analysis;
基于独立分量分析的脉搏波信号的降噪处理
6)  Independent Component Analysis(ICA)
独立分量分析
1.
Using simulated SEMG signals,the performance of proposed decomposition algorithm was analyzed and compared with that of the decomposition technique adopting independent component analysis(ICA),the decomposition experimen.
根据表面肌电信号(SEMG)形成的生理学特性,采用一种基于卷积混合过程的盲源分离技术来分析隐含在SEMG信号中的运动单位动作电位信息,利用仿真的SEMG信号对这种算法的分解性能进行实验研究,并与采用瞬时混合过程的独立分量分析(ICA)算法的分解性能进行比较,同时将该算法应用于真实SEMG信号的分解实验。
2.
Independent component analysis(ICA)can separate the sources from their mixtures and make the output statistically as independent as possible;it can remove noises effectively.
独立分量分析(ICA)能够从混合信号中分离出最独立的成分,有效抑制噪声。
3.
In order to blind estimation the sequence of asynchronous direct spread signals, this work used independent component analysis(ICA) combining with principle component analysis(PCA) to blindly separate the data bits of different users without the knowledge of the channel.
为解决异步直扩序列的盲估计问题,提出采用独立分量分析(ICA)结合主分量分析(PCA),在信道未知情况下有效盲分离多用户多径直扩信号和扩频码信息。
补充资料:白噪声分析


白噪声分析
white noise analysis

  有形田广义函数都是有限阶的((.少·)’=口养,(、犷)一,);T和S变换可扩张到(夕·)’,定义为广义函数小对〔,·)中的指数函数的作用:(T。)(f)=<。,。‘朴);任何正的及田广义函数中都是一个正测度v。(KoH八-paTbeB,CaMo认几eHKo与横井的一个定理([A13],IA14」)) 瑰田广义函数的例子.1)局部Wlck幂(focalWiek Power): 中(。)二:。”(t):,(S中)(f)二f.(t). 2)功nsker占函数(Donsker占~丘mction): 中=j(B(t)一a), (S。)(f)一(2:t)’/,e(F(‘)一)’/(,!,,其中F(:)一丁台f(s)J 5. 3)白噪声占函数(white noise占~丘mction)。=j。,,由下式给出: <。,争)二不(。),(s。)(f)二。‘“·介e(f). 4)正规化Gauss函数(norlllal」zed G-auss~): 侧叫二一军共迄黑一, E(e、山人“”) (S小)(f)一。‘f,(K/(‘一2、)),,.注意例4)的正规化指数。(田)=Nexp((田,K田>)对于一大类算子K有完全确定的S变换,比单独用来定义Gauss型与分母的正规化常数的算子类要大得多.对于这样的K,可以由它的S变换来定义Nexp(<田,Ka,)).以其S或T变换来描述魏田广义函数是十分有用的.这之所以可能,是由于下面的表征定理(charaeterization theo~)(【A15」).如下三个命题是等价的: a)设F是Schwartz空间上的复值泛函,使得对任何.厂〔丫:i)g(又,f,,fZ)三F(又f,十fZ)有一个又的整解析开拓;五)对于某正数C‘和p和所有复数公有如下的上界估计: IF(z,f)!簇C,exp(C 2 12}’}l通’fl{;). b)F是一个及田广义函数。钊L?)’的S变换. c)F是一个疮田广义函数。钊酬)‘的T变换. 具有上述性质a)的泛函已被称为U泛函(U-丘mctionals).作为这个定理的一个推论是,如果其对应的U泛函序列是一致收敛的,那么魏田广义函数的序列必定收敛.类似的定理已被证明对于更一般的Gauss系统也成立,特别涵盖了多参数白噪声或向量值Bn)们运动的广义函数这种有意义的情形([A161).其他变种则处理放宽关于U泛函的增长条件a)五)的空间(汇A17」,[A18]) 显然,扩充(LZ)的广义函数空间的构造远非唯一其他的例子有由P.A.Meyer(【A19])、杉田“A211)、渡边“八口0」)研究过的三元丝且,它有较大的检验函数空间,从而有较少的广义函数.还需指出,tAS]中P.K比e的文章有他的原始工作的一个概述与参考文献.相反地,由Meyer和严加安(tA181)提出的三元组由于去掉了U泛函的增长条件而达到了一个更大的广义函数空间.在量子概率(quant切rn pro-恤bi】ity)文献中讨论的检验泛函空间的例子是【八221的空间K二自。,。刀(r(all)). 表征定理有许多的应用和推论,例如动在上面给出的S变换的诸例中,易简洁验证其U泛函性质;从而这个定理直接保证了这些表示式的确是魏田广义函数的S变换.川U泛函在逐点加法与乘法下显然组成一个代数;这导致〔7)‘上的两个代数结构,其相应的广义函数之乘积分别是卷积(用T一l)和正规编序积(用(S一‘)).下)在一对涨田变换之间存在如下的线性关系 S中=F=T小.如果用一个正态分布(加爪.1 distribution)代替白噪声测度,可以发现中不是别的,而是中的F以的er变换(Fourier transform). 无穷维F加的er变换.见[A23]一[A25],[A41第9章.上面的评注建议如下的定义:对于小钊夕)‘,称金二T一’s小为中的Fourie:变换(Fouric:trans-允nn). 若干例子与性质如下.1的Fo盯ier变换是零点处的白噪声占函数:i一。。,占。一1.Fourie:变换把导数与坐标乘法相互关联 (日叫‘一佃示,(。明‘二叼击.这就是为什么单挑出中~小作为Fourier变换对无穷维的自然推广的原因:这是唯一的(当然除相差一常值乘子外)从(夕·)‘到其自身的具有这个关联性质的连续线性变换([八261). 残‘d旧以型.见,口71,[A28],[A4]第10章.回忆一下正的形田广义函数必是测度,对于任何严格正(即v。在所有开集上为正)且使。在L:(dy。)为可闭的涨田广义函数中,从 。(价)“<小,}V中}’>,得到Dinchlet型。“A29」一1 A31」),然后对于这样的。,在LZ(dv。)中有 万(p)=J!万”,职IJ’,其中H是与一状态空间为‘7‘(R)的扩散过程相联系的MapK皿半群的自伴生成元. 若干应用.上面是【A32]中有限维局部Dirichiet型的一个直接推广,用量子力学基态的语言,它产生了Schr团inger Hamilton算子H及解非线性随机微分方程的扩散过程.在现在的构架中,人们自然会提出这样的问题:用对白噪声测度产的(广义)密度函数,即经由正的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条