说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Bent互补函数偶族
1)  Families of Bent complementary function pairs
Bent互补函数偶族
1.
Recursive construction based on special arrays for the families of Bent complementary function pairs;
基于特殊阵列递归构造Bent互补函数偶族
2)  The families of Bent complementary functions
Bent互补函数族
3)  Bent function pair mates
Bent函数偶侣
1.
Bent function pair mates is given on the basis of BCFPF.
在提出一类新的类Bent函数——Bent互补函数偶族的概念基础上,进一步研究了Bent互补函数偶族的构造方法,通过提出Bent函数偶侣的概念,运用具有这种特殊关系的两个Bent互补函数偶族,采用递归的方法,可以用低维Bent互补函数偶族递归构造出高维Bent互补函数偶族,丰富了Bent互补函数偶族的构造方法,扩大了Bent互补函数偶族的可选取范围。
4)  Bent functions
Bent函数
1.
This paper proves the concept of quarter Bent functions based on the Bent functions and semi-Bent functions,and gives a method to construct semi-Bent functions.
在Bent函数和半Bent函数的理论基础上证明了四分Bent函数的概念,并给出了半Bent函数的一种构造办法。
2.
Plateaued functions include Bent functions and partially bent functions, but are wider than them.
Plateaued函数是包含Bent函数和部分Bent函数的更大函数类,是一类密码学性质优良的密码函数,在非线性组合函数的设计中有重要的应用。
3.
We also use one special class multi-output bent functions to construct unbiased multi-output Boolean functions with very high nonlinearity.
我们还利用一类特殊的多输出bent函数构造出具有非常高非线性度的无偏多输出函数。
5)  Bent function
Bent函数
1.
Bent function and the finite state machine combiner in stream ciphers;
流密码中Bent函数与有限状态机组合器
2.
Sufficient and necessary conditions for the sum of Bent functions being Bent functions and their correlation coefficient;
Bent函数之和为Bent函数的等价判别及其相关系数
3.
Constructions of a class of k-quasi Bent functions;
一类k阶拟Bent函数的构造
6)  semi-Bent function
半Bent函数
1.
In the method, a multi-output Bent function is constructed by concatenating two multi-output semi-Bent functions.
推广了半Bent函数的概念,提出了多输出半Bent函数的概念,并由此给出了多输出Bent函数的一种构造方法。
2.
A method to construct Bent functions with even variables is presented?It constructs a Bent function by concatenating two semi-Bent functions, and the constructed Bent function has the maximum algebraic degree and the controllable terms.
该方法通过级联二个半Bent函数得到Bent函数,所构造的Bent函数具有极大的代数次数和可控的单项式项数。
补充资料:函数奇偶性

1.定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

2.奇偶函数图象的特征:

定理 奇函数的图象关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

f(x)为奇函数《==》f(x)的图像关于原点对称

点(x,y)→(-x,-y)

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条