1) Neumann expansion monte carlo method
Neumann展开MonteCarlo法
2) Neumann expansion method
Neumann展开方法
1.
In this paper,we introduce the properties of Hamiltonian equations,symplectic geometric algorithms and symmetric,Magnus expansion and Neumann expansion methods.
本文介绍了Hamilton方程的性质、辛几何算法、对称方法、Magnus展开和Neumann展开方法。
3) Neumann expansion
Neumann展开
1.
Taking two schemes as example,we study Neumann expansion method.
以两个格式为例,研究了Neumann展开方法。
2.
Aiming at the problem that the rotational response is difficult to measure in structural identification,an approximate algorithm based on Neumann expansion theory is developed for rotational response identification.
针对结构识别中转角信息难以测量的问题,提出了基于Neumann展开的转角信息识别问题近似算法。
4) Neumann series expansion
Neumann级数展开
1.
When structure performance functions can not be explicitly expressed by random variables and need to be determined by finite element analysis, Neumann series expansion is incorporated into finite element numerical tests in the traditional response surface method.
当结构功能函数无法表达为随机变量的解析表达式而需借助有限元计算时,在传统响应面法的有限元数值试验中引入Neumann级数展开式,可以加速求出设计验算点。
2.
In this method,the computation time of finite-element numerical tests is effectively shortened by introducing the Neumann series expansion,thus improving the computation efficiency.
为此文中提出一种改进的响应面法,即Neumann展开响应面法,该法通过引入Neumann级数展开式,有效缩短了有限元数值试验时间,从而提高了响应面法的计算效率。
5) Monte Carlo method
MonteCarlo法
1.
Then this paper discusses the solutions of the dispersion functions by Monte Carlo method and compares them with those by the Newton iteration method.
其次 ,还讨论了用MonteCarlo法求解面波频散函数的问题。
2.
With Monte Carlo method, a group of stochastic variable uniformly distributed over [0,1] were used to simulate the uniform illuminance source and the Lambertion reflection in the inner face of the integrating sphere.
应用MonteCarlo法原理,利用区间[0,1]上均匀分布的随机变量产生的均匀照度光源模型及光在积分球内表面的漫反射模型,用Matlab编程,对一积分球出口平面处及距出口100mm以内的10个平面上的辐射能量和辐照度进行了计算机模拟。
3.
One was based on Monte Carlo method,and the ot.
针对路段通行能力分布的不同假设,给出分别基于MonteCarlo法和解析法的两种不同算法求解可靠性模型,并讨论了两种方法的特点和应用范围,同时用一个简单的例子进行了说明。
6) Monte Carlo simulation
MonteCarlo法
补充资料:上行展开法
分子式:
CAS号:
性质:在平面色谱中,溶剂沿纸或薄层板的下端不断地向上移动的展开过程。是最常用的展开法。
CAS号:
性质:在平面色谱中,溶剂沿纸或薄层板的下端不断地向上移动的展开过程。是最常用的展开法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条