1) weighted m-SET PACKING
带权m-SET PACKING
2) Set Packing
Set Packing问题
1.
Research and Application of Measure and Conquer in Set Packing;
加权分治技术在Set Packing问题中的应用与研究
3) packing dimension
Packing维数
1.
Hausdorff and Packing dimension of graph and level sets for d dimension stationary Gaussian processes;
d维平稳高斯过程图集和水平集的Hausdorff维数和Packing维数
2.
When N≤αd,P(dimGr(X(E,w))=1[]αdimE,for all E∈B(R~N))=1 and P(DimGr(X(E,w))=1[]αDimE,for all E∈B(R~N))=1 are proved,where dimF and DimF denote the Hausdorff dimension and Packing dimension of F,and Gr(X(E,w))={(t,X(t,w)),t∈E} denote graph sets.
证明了若N≤αd,则P(di mGr(X(E,w))=1αdi mE,对一切Borel集E成立)=1;P(Di mGr(X(E,w))=1αDi mE,对一切Borel集E成立)=1,其中di mF与Di mF分别表示F的Hausdorff维数与Packing维数,Gr(X(E,w))={(t,X(t,w)),t∈E}表示图集。
3.
We obtained uniform Hausdorff dimension and uniform Packing dimension of its image set.
研究了N指标d维广义Wiener过程像集的一致维数和测度,得到了其像集的一致Hausdorff维数和一致Packing维数。
4) packing problem
packing问题
1.
The triangles packing problem is NP-hard.
三角形Packing问题是NP难的,其完整算法的时间复杂度是指数型的。
2.
Inspired by an old adage "gold corner, silver side and strawy void", the idea is improved with "diamond cave" and a new quasi-human algorithm is proposed for solving a typical NP-hard problem, the famous cuboids packing problem.
对典型的NP难度问题——著名的长方体Packing问题,通过观察体会人类几千年来在砌石头下围棋等活动中形成的经验和智慧,受到谚语"金角银边草肚皮"的启发,并将它发展提高到"价值最高钻石穴",提出了一种最大穴度的占角动作优先处理的拟人算法。
3.
The arranging and scheduling of lock chambers is described with a mathematical model of tow-dimension Packing problem,which is a typical NP totality problem.
提出一种基于分步降维思想的启发式快速编排算法,该算法把闸室编排二维Packing问题降到一维求解,有效解决三峡-葛洲坝联合调度的计划编排中与闸室编排相耦合的时间表问题。
5) Packing problems
Packing问题
1.
Based on these, many types of packing problems are considered NP complete, and they are divided into three classes according to the topologies of their solution spaces.
本文讨论了离散模型与连续问题的关系以及图灵机的计算能力,在此基础上扩充了问题及 NP完全问题的定义,根据解空间的拓扑结构特点将NP完全的Packing问题分为三类,并对多边形 Packing问题进行了有益的探讨。
6) rectangle packing
矩形packing
1.
An intelligent enumerative algorithm for solving rectangle packing problem;
一种求解矩形packing问题的智能枚举算法
补充资料:packing characteristics
分子式:
CAS号:
性质:义齿基托聚合物在面团期形成内填塞型腔的性能。将处于面团形成期的义齿基托树脂放在特制的带孔黄铜板上,于规定温度下,加一定负荷并保持一定时间,检测树脂进入孔的数量及深度。进入孔中的树脂突数量多而且长的,表明其充填性能好。
CAS号:
性质:义齿基托聚合物在面团期形成内填塞型腔的性能。将处于面团形成期的义齿基托树脂放在特制的带孔黄铜板上,于规定温度下,加一定负荷并保持一定时间,检测树脂进入孔的数量及深度。进入孔中的树脂突数量多而且长的,表明其充填性能好。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条