说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 梯度特征
1)  gradient feature
梯度特征
1.
The Method of License Plate Location Based on Texture Analysis and Gradient Feature
基于纹理分析和梯度特征的车牌定位算法
2.
A novel similarity measure of gradient features and adaptive window method was used to track air target with changes in viewpoint,pose,illumination and scale.
该方法基于MAD构造了一种新的梯度特征相似度量算法,在梯度特征空间对目标进行匹配定位。
3.
In order to achieve robust and efficient tracking of a battleplane with strong flexibility, a novel tracking method based on a new similarity measure of gradient features and adaptive sizing of target is proposed in this paper.
为了稳定跟踪空中具有强机动特点的战斗机目标,提出了一种图像梯度特征相似性度量算法,并利用空中目标梯度空间分布特点构造了一种自适应调整模板尺寸的方法。
2)  Gradient of feature density
特征密度梯度
3)  fuzzy gradient feature
模糊梯度特征
1.
A fuzzy gradient feature extraction method based on gradient normalization applied in handwritten character recognition is proposed.
提出一种应用于手写字符识别的基于梯度归一化模糊梯度特征提取方法。
4)  color and gradient feature
颜色和梯度特征
1.
Based on the fusion of color and gradient features, this paper implements a novel approach to real-time background subtraction.
通过融合图像的颜色和梯度特征,实现了一种实时背景减除方法·首先融合颜色和梯度特征建立新的能量函数;然后基于图切割算法最小化能量函数,并对前景/背景进行分割;最后使用光流验证前景区域的真实性,并更新背景模型·对不同场景的实验结果表明:该方法可以实时地检测出视频序列中的运动物体,结果准确、有效
5)  gradient feature segmentation
梯度特征分割
1.
The method is based on the following three steps: first, Lee-filtering method is adopted to realize pre-filtering and noise reduction; this is followed by gradient feature segmentation, which separates the object area from the background area; finally the common linking method is adopted and the characteristic parameters of magnetic domain are calculated.
该方法采用如下三个步骤:首先,采用Lee滤波器进行预滤波和消除噪声;接下来进行梯度特征分割,将目标区域从背景中提取出来;最后对边缘进行连接并计算磁畴的特性参数。
6)  Spectral characteristic gradient
光谱特征梯度
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条