1) population-based ant colony optimization algorithm
基于群体-蚁群优化算法
2) Population-based ant colony optimization(P-ACO)
基于群体-蚁群优化
3) ant colony optimization algorithm
蚁群优化算法
1.
Solving 0-1 knapsack problem based on ant colony optimization algorithm;
基于蚁群优化算法的0-1背包问题求解
2.
Research on Warehouse Layout Optimization Based on Ant Colony Optimization Algorithm;
基于蚁群优化算法的仓库布局优化研究
3.
An ant colony optimization algorithm was used to solve the goods picking path planning problem.
该文针对自动化立体仓库单拣选台分层水平旋转货架系统,建立了数学模型,引入基于群集智能的蚁群优化算法解决货物拣选路径规划问题。
4) ant colony optimization
蚁群优化算法
1.
Research on ant colony optimization algorithm for the open vehicle routing problem;
开放式车辆路径问题的蚁群优化算法
2.
Research on Several Problems on Basis of Ant Colony Optimization;
基于蚁群优化算法的若干问题的研究
3.
Study on Ant Colony Optimization Algorithm and Its Application to Short Generation Scheduling of Electric Power Systems;
蚁群优化算法及其在电力系统短期发电计划中的应用研究
5) Ant Colony Optimization(ACO)
蚁群优化算法
1.
Ant Colony Optimization(ACO) behaves well in finding local optimum,whereas its global search depends on selection of the evaporation coefficient.
蚁群优化算法(ACO)的正反馈机制使其具有强大的局部搜索性能,但其全局优化性的优劣在很大程度上与挥发系数的选择有关,如选择得不合适则易将使算法陷入局部最优,而禁忌搜索算法(TS)则具有强大的全局优化性能。
2.
On the basis of the analyses of ant colony optimization(ACO) and particle swarm optimization(PSO),continuous ant-particle swarm optimization(CA-PSO) applied in continuous function optimization is proposed.
在对蚁群优化算法(ACO)和粒子群优化算法(PSO)进行分析的基础上,提出一种解决函数连续优化的群智能混合策略——CA-PSO。
6) ant colony optimization (ACO) algorithm
蚁群优化(ACO)算法
补充资料:计算算法的最优化
计算算法的最优化
ptimization of computational algorifans
计算算法的最优化【。洲咧匕6阅ofc咖例。柱.目习子时-d,”6;onT一Mo3a双,Ra,一eju.Teju.II.叱a几r0P盆n陇o,1 在求解应用问题或精心设计标准程序系统时最优计算算法(comPutatio几al algorithm)的选择.当解决一个具体间题时,最优策略可能不会使解法最优化,可是为优化一个标准程序或应用最简单的解法编制程序则是很直截了当的. 计算算法的最优化问题的理论提法是基于下述原则.当选择一种方法来求解一个问题时,研究人员关心的是某些特性,而且根据这些特性来选择算法,同时这个算法也能用来解决具有这些特性的其他问题.据此,在算法的理论研究中,人们引人了具有特殊性质的一类问题尸.当选择一种解法时,研究人员有一组解法M可供选用.当选用一种方法m来求解一个问题p时,得到的解会有一定的误差e(p,m).称量 E(P,m)=sllp}。(p,m)I P‘P为在这类问题P中方法m的误差(en刀r of the nrth-od),同时,称量 E(p,M)一惑E(p,m)为M中方法在尸中误差的最优估计(。Ptimal estirnateof the error).如果存在一种方法,使得 E(P,m。)=E(P,M),那么称这个方法为最优的(optirnal).研究计算算法最优化问题的一个方案可以追溯到A .H .KQJLMoropoB(【2」),所考虑的是计算积分 1 ‘(f)一Jf(x)dx 0问题的集合,给定的条件是}f(时}成A,其中M是所有可能求积 N ‘(f)澎,万:C,f(x,)的集合·每一种求积由总数为ZN的cj和礼确定.由具有所需精度的某函数类重新生成一个函数所需要的最小信息量(见【2],「31)也可以包含在这个方案中.这个问题的一个更详细的阐述可查阅【4],它指出在特定意义下实现算法的工作量与应用的存储量同样大.最优算法仅对极少数类型问题存在(汇1」),然而,对大量计算问题,已经建立了就其渐近特性而言几乎是最优的方法(见汇5]一【8」). 对某类问题最优的计算算法特性的研究工作(见15],【71)包含两部分:建立其特性尽可能好的具体解法,和根据计算算法的特性得出估计量(见【2]一【4],【9】).实质上,问题的第一部分是数值方法理论的一个基本问题,而且在大多数情况下它是与最优化问题无关的研究工作.下面得到的估计通常归结为对£摘(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条