说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 四阶MUSIC
1)  fourth-order MUSIC
四阶MUSIC
1.
This paper puts forward two improvement methods root-MUSIC algorithm and fourth-order MUSIC algorithm,the former uses the method of finding the multinomial root to replace the spectrum search in the MUSIC algorithm,the later is based on fourth-order cumulant to suppress colored Gaussian noise.
提出了两种改进方法——求根MUSIC算法和四阶MUSIC算法,前者用求多项式根的方法来代替MUSIC算法中的谱搜索,后者是基于四阶累计量来抑制色高斯噪声。
2)  quaternion-MUSIC
四元数MUSIC
1.
Parameters estimation of vector-sensor array in colored noise based on quaternion-MUSIC;
色噪声背景下基于四元数MUSIC方法的矢量阵列信号参量估计
3)  fourth-order
四阶
1.
Existence of solutions for a class of fourth-order difference boundary value problem and critical point method;
一类四阶差分边值问题解的存在性与临界点方法
2.
Positive solutions of boundary value problems for systems of nonlinear fourth-order differential equations;
四阶非线性微分方程组边值问题的正解
3.
The existence of at least two positive solutions is proved for the nonlinear fourth-order periodic boundary valve problem u(4)(t)-βu″(t)+αu(t)=λf(t,u(t)),0≤t≤1,u(i)(0)=u(i)(1),i=0,1,2,3,where β>-2π2,0<α<(1/2β+2π2)2,α/π4+β/π2+1>0,λ>0 is a constant and f:×[0,+∞)→[0,+∞) is continuous by using fixed-point theorem and degree theory.
利用不动点和度理论,证明了四阶周期边值问题u(4)(t)-βu″(t)+αu(t)=λf(t,u(t)),0≤t≤1,u(i)(0)=u(i)(1),i=0,1,2,3,至少存在两个正解,其中β>-2π2,0<α<(1/2β+2π2)2,α/π4+β/π2+1>0,f:[0,1]×[0,+∞)→[0,+∞)是连续函数,λ>0是常数。
4)  fourth order
四阶
1.
The solvable condition of the fourth order variable coefficient linear differential equations;
四阶变系数微分方程的可解条件
2.
We study the existence of positive solutions of fourth order semipositive boundary value problem y (4) -λf(x,y)=0,0<x<1 y(0)=y(1)=y′(0)=y′(1)=0 where λ>0, the main methods are fixed point theorems in a cone.
证明了四阶半正边值问题 y( 4) -λf(x ,y) =0 ,0 0且充分小时正解的存在性 ,应用的工具是锥上的不动点定理。
3.
The theorem that a kind of fourth order linear differential equation with variable coefficients can be changed into fourth order linear differential equations with constant coefficients is deduced.
给出了一类四阶变系数线性微分方程化为四阶常系数线性微分方程的定理,并在具体的例子中加以实现。
5)  four order
四阶
1.
By means of variable substitution and complex functional derivation method,this paper gives a new kind of four order different equation,some kind of solution with sufficient and necesiory conditions.
借用变量替换法及复合函数求导法则,提出新一类四阶微分方程,具有某种形式的解的充要条件,所得结论是对有关文献结果的推广与扩充。
2.
By means of dual variation method and deviation method,this paper gives one kind of four order nonlinear differential equation and sufficient conditions for some kind of solutions.
借助双变换法及求导法则,给出一类四阶非线性微分方程,具有某种形式的解的充要条件,所得结论是对有关文献结果的深化与推广。
6)  MUSIC [英]['mju:zɪk]  [美]['mjuzɪk]
MUSIC法
1.
Application of DFT In the 2-D DOA Evaluation of MUSIC;
DFT在二维DOA估计的MUSIC法中的应用
补充资料:七阶──藏教七阶
【七阶──藏教七阶】
  ﹝出天台四教仪集注﹞
  藏教者,即小乘经律论三藏教也。阶者,阶级次第也。谓藏教菩萨修行之次第也。(菩萨,梵语具云菩提萨埵,华言觉有情。)
  [一、四弘誓愿],弘者,大也。誓者,要制其心也。愿者,志求满足也。谓菩萨从初发心,观四谛境,发四弘誓,一、未度者令度,即众生无边誓愿度,此观苦谛境。二、未解者令解,即烦恼无数誓愿断,此观集谛境。三、未安者令安,即法门无量誓愿学,此观道谛境。四、未得涅槃者令得涅槃,即佛道无上誓愿成,此观灭谛境也。(梵语涅槃,华言灭度。)
  [二、三祇修六度],三祇者,三阿僧祇劫也。六度者,布施、持戒、忍辱、精进、禅定、智慧也。度,越也,越生死流,到涅槃岸也。谓菩萨既发心已,必须行六度行,填满本愿,是为三祇修六度。(梵语阿僧祇劫,华言无数时。)
  [三、百劫种相好],劫,梵语具云劫波,华言分别时节。百劫种相好者,一增一减为一小劫;凡历二十番增减,为一中劫;八十番增减,为一大劫。谓菩萨于百劫中,种诸相好。用百福德成一相好,如是至三十二相具足,而身清净也。(人寿从十岁增至八万四千岁,名增劫。从八万四千岁减至十岁,名减劫。如是一增一减,名一小劫。三十二相者,足下安平相,千辐轮相,手指纤长相,手足柔软相,手足缦网相,足跟满足相,足趺高好相,端如鹿王相,手过膝相,马阴藏相,身纵广相,毛孔生青色相,身毛上靡相,身金色相,身光面各一丈相,皮肤细滑相,七处平满相,两腋满相,身如师子相,身端直相,肩圆满相,四十齿相,齿白齐密相,四牙白净相,颊车如师子相,咽中津液得上味相,广长舌相,梵音深远相,眼色如金精相,眼睫如牛王相,眉间白毫相,顶肉髻成相也。)
  [四、六度相满],六度相满者,谓菩萨修行六度之相圆满也。如尸毗王代鸽,即檀度满也。普明王舍国,即戒度满也。羼提仙人被歌利王割截身体,慈忍不动,血变为乳,即忍度满也。大施太子抒海,即精进度满也。尚阇黎鹊巢顶上,即禅度满也。劬嫔大臣分阎浮提为七分,城邑山川均等,故能息诤,即智度满也。如上六人,皆释迦往昔所修之行,是为六度相满。(梵语尸毗,华言与。代鸽者,遍割身肉与鹰以代鸽命,身肉俱尽,不恼不死,自誓真实,感身平复也。梵语羼提,华言忍辱。梵语歌利,华言恶世无道。大施太子求如意珠济贫,得珠堕海,抒海取之,言欲酌海干而取之也。筋骨断坏,终不解废,诸天见而问之,答曰:吾生生不休。诸天愍之,助其抒海,海水减半,龙恐海干,令夜叉送珠还之。尚阇黎者,螺髻仙人,名此人得四禅定,出入息断,鸟谓为木,于髻生卵。定起欲行,恐鸟母不来,即更入定,待鸟飞去,方始出定。梵语阎浮提,华言胜金洲。梵语释迦,华言能仁。)
  [五、兜率降生],梵语兜率,华言知足。降生者,谓菩萨将补佛处,出世度生,即从兜率天降生人间,以补其处,是为兜率降生。(菩萨即释迦佛也。补佛处者,前佛既灭,而此菩萨即补其处也。)
  [六、降神出家],谓菩萨既降神出胎,厌生老病死之苦,而欲脱离,故求出家,入山修道,是为降神出家。
  [七、菩提树下成道],梵语菩提,华言道。谓菩萨自知成道时至,于菩提树下,破诸魔众。魔王败绩,鬼兵退散,菩萨安坐不动,即成佛道,是为菩提树下成道。(菩提树者,谓佛于此树下成道,故名菩提树也。)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条