1) null-parameter density estimation
无参密度估计
2) Non-parametric density estimation
非参数密度估计
1.
Based on the temporal distribution model learned by mixture of Gaussians,the spatial background model of per-pixel is utilized to construct the spatial distribution of background in the local region by non-parametric density estimation.
首先利用混合高斯模型学习每个像素在时间域上的分布,构造了基于像素的时间域背景模型,在在此基础上,通过非参数密度估计方法统计每个像素邻域内表示背景的高斯成分在空间上的分布,构造了基于像素的空间域背景模型;在决策层融合了基于时空背景模型的背景减除结果。
3) nonparametric density estimation
非参数密度估计
1.
Accelerated by the development of Probability Theory and Statistics and the trend of their combined use, application researches based on point sample analysis and modeling using nonparametric density estimation attract more and more attentions of researchers.
近年来,受概率论与统计学竞相发展以及交叠应用的趋势促进,基于非参数密度估计点样本分析建模的应用研究受到越来越多研究者的关注。
4) Nonparametric kernel density estimation
非参数核密度估计
1.
In this paper the structure of nonparametric kernel density estimation and itsmain property are introduced.
该文介绍了非参数核密度估计的构造和主要性质,给出了确定窗宽的数学表达式,并结合实例,说明了该方法在拟合直径分布中的应用,对于林分直径模拟和预测,非参数方法可能成为一种有用的方法。
2.
On the basis of the image correlation and the nonparametric kernel density estimation,kernel density functions of background and foreground were built.
首先,在图像相关性的基础上,利用非参数核密度估计的方法,建立前景和背景的核密度函数,再利用贝叶斯理论,估计出背景和前景的先验概率,两者相结合得到一个估计的阈值,从而实现目标和背景的分类。
5) nonparametric density estimation
非参数概率密度估计
6) non-parametric polynomial density estimate
非参数多项式密度估计
补充资料:功率谱密度估计
随机信号的功率谱密度用来描述信号的能量特征随频率的变化关系。功率谱密度简称为功率谱,是自相关函数的傅里叶变换。对功率谱密度的估计又称功率谱估计。平稳随机信号x(t)的(自)功率谱Sxx(ω)定义为
(1)
式中rxx(τ)为平稳随机信号的自相关函数。
对于离散情况,功率谱表示为
(2)
式中T为离散随机信号的抽样间隔时间。
当利用随机信号的 N个抽样值来计算其自相关估值时,即可得到功率谱估计为
(3)
可见,随机信号的功率谱与自相关函数互为傅里叶变换的关系,这两个函数分别从频率域和时间域来表征随机信号的基本特征。按上式计算功率谱估值,其运算量往往很大,通常采用快速傅里叶变换算法,以减少运算次数。
计算信号功率谱的方法可以分为两类:一为线性估计方法,有自相关估计、自协方差法及周期图法等。另一类为非线性估计方法,有最大似然法、最大熵法等。线性估计方法是有偏的谱估计方法,谱分辨率随数据长度的增加而提高。非线性估计方法大多是无偏的谱估计方法,可以获得高的谱分辨率。
参考书目
何振亚:《数字信号处理的理论与应用》,人民邮电出版社,北京,1983。
A. V. Oppenheim, R. W. Schafer, Digital Signal Processing Prentice-Hall, Inc., Englewood Cliffs,New Jersey,1975.
(1)
式中rxx(τ)为平稳随机信号的自相关函数。
对于离散情况,功率谱表示为
(2)
式中T为离散随机信号的抽样间隔时间。
当利用随机信号的 N个抽样值来计算其自相关估值时,即可得到功率谱估计为
(3)
可见,随机信号的功率谱与自相关函数互为傅里叶变换的关系,这两个函数分别从频率域和时间域来表征随机信号的基本特征。按上式计算功率谱估值,其运算量往往很大,通常采用快速傅里叶变换算法,以减少运算次数。
计算信号功率谱的方法可以分为两类:一为线性估计方法,有自相关估计、自协方差法及周期图法等。另一类为非线性估计方法,有最大似然法、最大熵法等。线性估计方法是有偏的谱估计方法,谱分辨率随数据长度的增加而提高。非线性估计方法大多是无偏的谱估计方法,可以获得高的谱分辨率。
参考书目
何振亚:《数字信号处理的理论与应用》,人民邮电出版社,北京,1983。
A. V. Oppenheim, R. W. Schafer, Digital Signal Processing Prentice-Hall, Inc., Englewood Cliffs,New Jersey,1975.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条