1) subspaces/linear uncorrelated-bases
子空间/线性无关基
2) linear subspace
线性子空间
1.
Face Recognition Based on the Linear Subspace Method;
基于线性子空间方法的人脸识别技术
2.
In this paper, we prove that the solution sets for inverse problem of system of homogeneous linear equation Ax=0 is a (n2-n)-dimensional linear subspace, and give its a group of base vectors .
证明了齐次线性方程组Ax =0的反问题的解集是Kn×n上的n2 -n维线性子空间 ,并指出了它的一组基 。
3.
In this paper,we introduce the concept of the biorder-ideal,and provide some necessary or sufficient conditions under which a linear subspace is a biorder-ideal.
主要是引入双序理想的概念,并研究线性子空间为双序理想的一系列充要条
3) Linear subspaces
线性子空间
1.
Facial illumination compensation based on linear subspaces and quotient image theory;
基于线性子空间和商图像理论的人脸光照补偿
2.
The paper debates mainly on the distance of a vector has relation to formative linear subspaces by another two vectors.
讨论了复内积空间上某向量与另一(两)个向量所张成的线性子空间的距离间的关系,得到了复内积空间上有关这些距离的一个等式。
4) infinite dimensional linear space
无限维线性空间
5) Space linear correlation
空间线性相关
6) infinite dimension linear space/supercyclic operator
无穷维线性空间/亚循环算子
补充资料:线性无关
线性无关
linear independence
线性无关〔血earin归卿血Ke;“抓e如明耽3姗cH-MoeT‘〕 线性代数(』放澎习罗b角)的主要概念之一设V是域K上的向且空间(vectorsP朗e);向量a,,‘二,。。称为线性无关的(haea月y汤由伴扣dent),如果对任何集合k“K(k,=·=k,=0除外)有 k一al+‘1·+‘。a。护0.否则,向量al,…,a。(”>l)称为线性相关的(五n“Lrly de详ndent).向量a;,…,a。是线性相关的,当且仅当其中至少有一个向量是其余向量的线性组合.V的向量的一个无限子集称为线性相关的,如果它的某个有限子集是线性相关的;称为线性无关的,如果它的任何有限子集都是线性无关的.一个空间的最大线性无关子集的元素个数(基数)与这个子集的选择无关,被称为这个空间的秩(拍业)或维数(din公比1on),而这个子集本身称为基(basis). 在特殊的情形下,当向量a:,…,a。是某个数域K的元素而k是K的子域时,就出现了数的线性无关性(h力“址inde因汕淤e ofn切旧be招)的概念.有理数域Q上的数的线性无关性可看作为无理性概念的推广(见无理数(让口山nal nLLm忱r)).从而,两个数:和1是线性无关的,当且仅当:是无理数. 对Abel群和模还引人了元素的线性相关性和线性无关性的概念. 线性相关性是集合上的抽象相关关系这一更广泛概念的特殊情形.0 A.物aHos“撰【补往1抽象相关关系也称为拟阵(订以杠。记),见[AI].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条