1) erosion mechanics mechanism
侵蚀力学机制
1.
According to observation data and the outcomes of artificial rainfall in Wangjiaqiao basin, based on erosion mechanics mechanism, two concepts of slope erosion and basin erosion are distinguished grimly and soil erosion models of slope and small watershed have been established.
根据王家桥流域观测资料及人工降雨实验成果,从侵蚀力学机制出发,严格区分了坡面侵蚀与流域侵蚀两个不同的概念,建立了坡面侵蚀模数和流域侵蚀模数。
3) vegetation-erosion dynamics
植被-侵蚀动力学
1.
Zoning and management strategies for the Loess Plateau based on vegetation-erosion dynamics;
基于植被-侵蚀动力学的黄土高原分区及治理策略
2.
A vegetation-erosion chart is derived from a vegetation-erosion dynamics model, with which the development trend of vegetation and erosion can be predicted, the effects of water and soil conservation measures can be evaluated, and the most effective management strategies can be selected.
植被-侵蚀动力学是研究流域植被与侵蚀在人类活动影响下演变规律的一门新的边缘学科。
5) chemical erosion mechanism
化学侵蚀机理
1.
The chemical erosion mechanism of slide board in casting of Ca-treated steel is analyzed,the research situation at home and abroad about it introduced.
分析了钙处理钢对现用滑板的化学侵蚀机理,介绍了目前国内外对钙处理钢用滑板的研究现状。
6) wind erosion
风力侵蚀
1.
Research on regular of wind erosion on road slope under different protection in semi-arid area of Northwest China;
西北半干旱区不同防护条件下公路边坡风力侵蚀研究
2.
With incremented railway construction in wind erosion areas,the problem of wind erosion of railway construction demand more attentions.
随着在风力侵蚀区交通工程建设的增多,交通线路风力侵蚀问题日益受到关注。
3.
The part wind erosion may appear because of the construction of embankment in non-wind-eroded area.
非风蚀地区铁路和公路路堤的修建可能会引起路堤局部的风力侵蚀,从而造成路堤的损坏和局部地区的扬尘。
补充资料:磁耦合机制和沙兹曼机制
解释太阳系角动量特殊分布的两种理论。太阳质量占太阳系总质量的99.8%以上,但其角动量(动量矩)却只占太阳系总角动量的1%左右,而质量仅占0.2%的行星和卫星等天体,它们的角动量却占99%左右。太阳系角动量的这种特殊分布,是太阳系起源研究中的一个重要问题。1942年,阿尔文提出一种"磁耦合机制"。他认为,太阳通过它的磁场的作用,把角动量转移给周围的电离云,从而使由后者凝聚成的行星具有很大的角动量。他假定原始太阳有很强的偶极磁场,其磁力线延伸到电离云并随太阳转动。电离质点只能绕磁力线作螺旋运动,并且被磁力线带动着随太阳转动,因而从太阳获得角动量。太阳因把角动量转移给电离云,自转遂变慢了。
1962年,沙兹曼提出另一种通过磁场作用转移角动量的机制,称为沙兹曼机制。他认为,太阳(恒星)演化早期经历一个金牛座T型变星的时期,由于内部对流很强和自转较快,出现局部强磁场和比现今太阳耀斑强得多的磁活动,大规模地抛出带电粒子。这些粒子也随太阳磁场一起转动,直到抵达科里奥利力开始超过磁张力的临界距离处,它们一直从太阳获得角动量。由于临界距离达到恒星距离的量级,虽然抛出的物质只占太阳质量的很小一部分,但足以有效地把太阳的角动量转移走。沙兹曼也用此机制解释晚于F5型的恒星比早型星自转慢的观测事实。晚于F5型的恒星,都有很厚的对流区和很强的磁活动,通过抛出带电粒子转移掉角动量,自转因而变慢。然而早于F5型的恒星,没有很厚的对流区,没有损失角动量,因而自转较快。
1962年,沙兹曼提出另一种通过磁场作用转移角动量的机制,称为沙兹曼机制。他认为,太阳(恒星)演化早期经历一个金牛座T型变星的时期,由于内部对流很强和自转较快,出现局部强磁场和比现今太阳耀斑强得多的磁活动,大规模地抛出带电粒子。这些粒子也随太阳磁场一起转动,直到抵达科里奥利力开始超过磁张力的临界距离处,它们一直从太阳获得角动量。由于临界距离达到恒星距离的量级,虽然抛出的物质只占太阳质量的很小一部分,但足以有效地把太阳的角动量转移走。沙兹曼也用此机制解释晚于F5型的恒星比早型星自转慢的观测事实。晚于F5型的恒星,都有很厚的对流区和很强的磁活动,通过抛出带电粒子转移掉角动量,自转因而变慢。然而早于F5型的恒星,没有很厚的对流区,没有损失角动量,因而自转较快。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条