说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 无约束极值
1)  unconditional extreme value
无约束极值
2)  constrained optimizations
极值约束
1.
The paper discusses the constrained optimizations problem of the inhomogeneous eigenvalue for symmetric triple diagonal matrix.
提出并讨论了基于极值约束的对称三对角矩阵的非齐次特征问题 ,且给出了数值算法和算例 。
3)  constrained extreme value
约束极值
1.
This paper gives the second order ample condition of Lagrange multiplier rule of constrained extreme value with the quadratic form,and proves it by use of counterevidence with the help of Lagrange theorem of mean value and Taylor formula;meanwhile,further strengthens hypothesis and its deduction is obtained according to the lemma and the above ample conditio
以二次型形式给出约束极值拉格朗日乘数法的一个二阶充分条件,并用反证法由拉格朗日中值定理及泰勒公式予以证明;同时进一步加强假设,由引理及上述充分条件得到其推论。
4)  constrained extremal solution
约束极值解
1.
In this paper,we used the concept of metric generalized inverse,gave the characterization and construction of constrained extremal solutions of T(x)=h in the set of extremal solutions of L(x)=y.
运用线性算子的度量广义逆概念,在L(x)=y的极值解集合中,给出T(x)=h的约束极值解的精确刻画。
5)  unconfined minimum
无约束极小
6)  (Restricted) Extremum Problem
有约束极值问题
补充资料:Weierstrass条件(对变分极值的)


Weierstrass条件(对变分极值的)
eierstrass conditions (for a variational extremun

与 ,(,)一丁:(:,、(:),、(。))过:, ,‘! L:R xR”xR”~R,在极值曲线x;、(t)上达到一个强局部极小值,其必要条件是不等式 、(r,x。(r),又。(r),亡))o对所有的t,t。蕊t毛t、和所有的省任C”都满足,其中‘·是Weierstrass澎函数(Weierstrass吕J一几mC-tion).这条件可借助于函数 n(t,x,p,u)=(p,u)一L(t,x,u)来表示(见n0HTp“「“H最大值原理(Pont月闷gm~-mum pnnciple)).Weierstrass条件(在极值曲线x。(t)上六)0)等价于函数n(r,x.,(t),尸。(r),u)当“=交.,(r)在u上达到极大值,其中夕。(t)=L、(t,x。,(t),又。(t)).这样,Weierstrass必要条件是floH-Tp。朋最大值原理的特殊情形. Weierstrass充分条件(Weierstrasss川币eientcon-山tion):为了泛函 叭 ,(,)一丁:(:,、(。),*(。))、。, r‘- L:R xR”xR”一,R在向量函数x.,(t)上达到一个强局部极小值,其充分条件是在曲线x。(t)的一个邻域G中存在一个向量值场斜率函数U(t,x)(测地斜率)(见H皿祀rt不变积分(Hilbert invariant integral)),使得 交。(t)=U(t,x。(t))和 产(t,x,U(t,x),七))0对所有(t,x)〔G和任何向量亡6R”成立.【补注]对在极值曲线的隅角的必要条件,亦见Wei-erstrass一Erd”.un隅角条件(W匕ierstrass一Erdrnanncomer conditions).weierstrass条件(对变分极值的)[Weierstrass cOI公i-tions(for a varia垃翻目翻drelll.ll:Be滋eP山TPaccayc-月OBH,,KcTpeMyMa」 经典变分法中对强极值的必要和(部分地)充分条件(见变分学(variational cakulus)).由K .We卜erstrass于1879年提出. 节几ierstrass必要条件(Weierstrass neeessary con-dition):为使泛函
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条