2) semi-analytical finite element method
半解析有限元法
1.
A semi-analytical finite element method for crack propagation problems based on linear cohesive force model is presented.
提出了求解基于线性内聚力模型的平面裂纹扩展问题的半解析有限元法,利用弹性平面扇形域哈密顿体系的方程,通过分离变量法及共轭辛本征函数向量展开法,推导了一个环形和一个圆形奇异超级解析单元列式,组装这两个超级单元能准确地描述裂纹表面作用有双线性内聚力的平面裂纹尖端场。
3) semi-analytical element method
半解析有限元
1.
Based on the principle of semi-analytical method and the assumption of transversely isotropic material of composite foundation,a semi-analytical element method,which it used to calculate the settlement of composite foundation,has been presented in which the displacements are modeled by means of analytic functions in two horizontal directions and discretized as polynomial expressions.
采用半解析有限元,将复合地基的位移水平两个方向上选取解析函数,竖向离散为多项式,并将复合地基视为横观各向同性材料,克服了有限元法中人为设定计算边界、计算量大的弊端,将三维沉降问题转化为一维问题计算,收敛速度很快,显著减少了计算工作量,提高了计算精度。
4) finite analytic element method
有限解析单元法
1.
A novel finite analytic element method for solving eddy current problems of moving conductor;
有限解析单元法求解运动导体涡流场
5) analysis finite element method
解析有限元法
1.
This article establishes ground water flows differential equation mathematical model of Sanjiang plain in the hydrology theory foundation,and uses the analysis finite element method to liner change the differential equation into the large-scale system of linear equations.
在水文理论的基础上建立三江平原地下水流动的微分方程数学模型,并采用解析有限元法将微分方程线性化为大型线性方程组,把线性方程组作为优化模型的一部分约束条件,将地下水流动状态方程与优化模型进行耦合,并用Lingo软件求解。
2.
This article establishes ground water flows differential equation mathematical model of Sanjiang plain in the hydrology theory foundation, and uses the analysis finite element method to liner change the differential equation into the large-scale system of linear equations.
在水文理论的基础上建立三江平原地下水流动的微分方程数学模型,并采用解析有限元法将微分方程线性化为大型线性方程组,把线性方程组作为优化模型的一部分约束条件,将地下水流动状态方程与优化模型进行耦合,并用Lingo软件进行求解。
6) finite element/semi-analytical method
有限元/半解析法
补充资料:解析函数元
解析函数元
analytic function, element of an
解析函数元[anai泌c腼由皿,element ofan;知姗郎~“.曰加甫中扒峨u.] 按照某个解析结构给出的复变量z的平面C内的区域D与在D上给定的解析函数f(z)的集合(D,f),这个结构能有效地实现f(z)到它的整个存在区域的解析开拓,形成一个完全解析函数(~Plete analytic funC-tion).解析函数元素最简单和最常用的形式是用幂级数 a0 f(z)=艺e*(z一a广(l) k二0及其中心为a(乖枣的宁J少(Cen‘re of an elemen‘)),收敛半径为R>o的收敛圆盘D={:“C:}:一al
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条