2) Copositive matrix
双正矩阵
3) bisymmetric matrix
双对称矩阵
1.
In this paper,the inversable matrix solution of a kind of real matrix equation X~△AX=A is considered,where A is a inversable bisymmetric matrix,X~△is bisymmetric transposed matrix of X,and their general solution forms are derived; the bisymmetric solution of a kind of real matrix equation XAX=A is considered,and their general solution forms are derived too.
本文讨论了实矩阵方程X~△AX=A(A为非退化实双对称矩阵,X~△为X的双转置矩阵)的非退化解问题,并给出一般解的形式;同时讨论了实矩阵方程XAX=A的双对称解问题,并给出了一般解的形式。
2.
By this iterative method,the least squares bisymmetric solution can be obtained within finite iterative steps in the absence of round off errors,and the solution with least norm can be got by choosing a special initial bisymmetric matrix.
同时,也能够给出指定矩阵的最佳逼近双对称矩阵。
3.
This paper has discussed the generalized inverse eigenvalue problem of centrosymmetric matrix,anti-centrosymmetric matrix and bisymmetric matrix.
本文讨论了在谱约束条件下中心对称矩阵、反中心对称矩阵和双对称矩阵的一般化逆特征值问
4) doubly center matrices
双中心矩阵
1.
This paper is focused on the inverse problem of doubly center matrices.
本文研究双中心矩阵反问题。
5) doubly stochastic matrix
双随机矩阵
1.
This novel DCT-based approach has three keys, the doubly stochastic matrix along with its coefficients are used to embed watermarking and play the role of private keys, while summation of transformation matrix of watermarking serves as public key.
在水印的嵌入与检测过程中用到了 3个密钥 ,双随机矩阵和嵌入尺度作为秘密钥保证了水印嵌入的安全性 ,DCT系数矩阵之和则作为公开钥用于水印信息的部分认证 文中算法实现了将图像作为水印信息隐藏到载体图像中 ;把水印信息的每一点都通过某种方式嵌入到载体图像的多个点上 ;使得攻击者在不知道秘密钥的情况下无法删除或改变水印信息 通过实验对嵌入和检测结果进行了比较和分析 ,表明该算法具有很好的稳健
2.
In each iteration,the correspondence probabilities were computed by employing the eigenvectors of the Laplacian matrix and the method of doubly stochastic matrix.
该方法在每次迭代过程中,利用Laplace矩阵的特征向量和双随机矩阵计算点之间的匹配概率,然后求解已知匹配点之间的TPS(thin plate spline)变换关系,再利用获得的TPS变换参数使待匹配点集相互逼近。
3.
For two real m×n matrices X and Y,Y is said to majorize X if SY=X for some doubly stochastic matrix S of order m.
对于2个m×n实矩阵X和Y,如果存在一个m阶双随机矩阵S,使得X=SY,则称矩阵Y控制X,记作Y X。
6) bisymmetric matrices
双对称矩阵
1.
Least-square solutions of inverse problems for bisymmetric matrices;
一类双对称矩阵反问题的最小二乘解
2.
Least-squares solution for the inverse problem of real matrices、symmetric matrices and bisymmetric matrices are studied in this thesis.
本文研究了子阵约束下实矩阵、实对称矩阵和双对称矩阵反问题的最小二乘解,全文主要包括以下内容。
3.
thesis and mainly discuss the following problems:What we mainly discussed in the second chapter as follows:(1) S1,S2 are sets of symmetric orth-symmetric matrices;(2) S1,S2 are sets of bisymmetric matrices;(3) S1,S2 are sets of anti-.
S_1,S_2为双对称矩阵; 3。
补充资料:双矩阵对策
双矩阵对策
bimatrix game
双矩阵对策【bi.洲xg~;6HMaTp~a,附,〕 一种两个局中人之间的有限非合作对策(n on-。。。详rative乎me).双矩阵对策是由两个维数同为mx。的矩阵A=lla,jll和B=”气11给定的;这两个矩阵分别是局中人I和n的支付矩阵(或增益矩阵).局中人工的策略是矩阵的行的选择,而局中人n的策略是列的选择.如果局中人工选取i(l(i(m),局中人fl选取j(l(j‘。),那么他们的支付(增益)将是分别a。和鸟;如果a,’十气=o对于所有i,j成立,那么双矩阵对策就变为矩阵对策(m atrix乎me).双矩阵对策理论是非合作对策一般理论中的最简单的分支,但是即使是双矩阵对策,也并非总是Nash意义下可解的或强可解的.有各种算法可用来求得双矩阵对策的平衡解:有描述产生平衡解集的所有极值点的A,B的子矩阵的方法(【l],[2]);也有把求双矩阵对策的平衡解的问题归结为二次规划(叫此atic Programming)问题的方法([3],[4],【5]).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条