1) bimatrix game
双矩阵博弈
1.
In this paper,the preferences on stochastic payoffs are defined by quantile,and the Nash equilibrium of the bimatrix game with stochastic payoffs is given base on the preferences.
引入分位数定义了随机支付值的偏好,并在此偏好的基础上定义带随机支付双矩阵博弈的纳什均衡。
2.
The main results is to obtain the essential types of bimatrix games and generic continuity of semicontinuous functions.
本文研究了2人非合作有限博弈的分类及函数的通有连续性问题,主要得到了双矩阵博弈的本质形式,证明了半连续函数的通有连续性。
3.
In this paper, the preferences on stochastic payoffs are defined by quantiles, and the Nash equilibrium of the bimatrix game with stochastic payoffs is given base on the preferences.
首先,本文将引人中位数来定义随机支苟值的偏好,并在此偏好的基础上进一步定义带随机支付双矩阵博弈的纳什均衡。
2) matrix game
矩阵博弈
1.
A matrix game is also called finite antagonistic game.
矩阵博弈又称有限对抗博弈 ,而对抗博弈的结果必是一方胜利、失败或双方和局。
2.
In this paper, we discuss the concepts of evolutionary stable strategy (ESS), neighborhood invader strategy (NIS) and global invader strategy (GIS) in matrix game and a kind of non-matrix game.
本文基于单种群多人矩阵博弈与一类非矩阵博弈模型,讨论演化稳定策略(ESS)、邻域进入者策略(NIS)与全局进入者策略(GIS)三个主要概念,并着重研究了ESS、NIS、GIS的性质及关系,获得了相应的结论。
3.
An algorithm is presented for finding approximate solution of Nash equilibrium in some n×n matrix game.
给出了一种求解某类n×n矩阵博弈Nash均衡的近似解的算法。
3) Interval-valued Bi-matrix Games
区间值双矩阵博弈
4) grey matrix game
灰矩阵博弈
1.
This paper studies the problems of grey matrix game based on pure strategy applying grey system theories.
在此基础上 ,用该灰矩阵博弈理论来解决某单位冬季取暖用煤的采购决策问题 ,取得了良好效
2.
It is a key step in solving pure strategies of the grey matrix game G()={S_1,S_2,A()},in which the interval grey number in the A() can not be put in order directly in the light of its values,that determinant rules and methods of bigand-small order in the interval grey number are designed.
对于区间灰数大小不能直接判定的灰矩阵博弈G()={S1,S2,A()}问题,其策略优超和纯策略求解问题的关键在于A()中区间灰数大小判定准则的设定与判定方法的设计。
5) non-matrix game
非矩阵博弈
1.
In this paper, we discuss the concepts of evolutionary stable strategy (ESS), neighborhood invader strategy (NIS) and global invader strategy (GIS) in matrix game and a kind of non-matrix game.
本文基于单种群多人矩阵博弈与一类非矩阵博弈模型,讨论演化稳定策略(ESS)、邻域进入者策略(NIS)与全局进入者策略(GIS)三个主要概念,并着重研究了ESS、NIS、GIS的性质及关系,获得了相应的结论。
6) standard grey matrix game
标准灰矩阵博弈
补充资料:双矩阵对策
双矩阵对策
bimatrix game
双矩阵对策【bi.洲xg~;6HMaTp~a,附,〕 一种两个局中人之间的有限非合作对策(n on-。。。详rative乎me).双矩阵对策是由两个维数同为mx。的矩阵A=lla,jll和B=”气11给定的;这两个矩阵分别是局中人I和n的支付矩阵(或增益矩阵).局中人工的策略是矩阵的行的选择,而局中人n的策略是列的选择.如果局中人工选取i(l(i(m),局中人fl选取j(l(j‘。),那么他们的支付(增益)将是分别a。和鸟;如果a,’十气=o对于所有i,j成立,那么双矩阵对策就变为矩阵对策(m atrix乎me).双矩阵对策理论是非合作对策一般理论中的最简单的分支,但是即使是双矩阵对策,也并非总是Nash意义下可解的或强可解的.有各种算法可用来求得双矩阵对策的平衡解:有描述产生平衡解集的所有极值点的A,B的子矩阵的方法(【l],[2]);也有把求双矩阵对策的平衡解的问题归结为二次规划(叫此atic Programming)问题的方法([3],[4],【5]).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条