说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 线性组合核函数
1)  linear combination kernels function
线性组合核函数
2)  nonlinear combining functions
非线性组合函数
1.
A high-performance encryption chip which is based on LFSR(Linear Feedback Shift Registers),nonlinear combining functions and FPGA(Field-Programmable Gate Array) has been designed,which can be used in the cryptography field.
以非线性组合函数和线性反馈移位寄存器(LFSR:L inear Feedback Sh iftRegisters)为基础,利用可编程逻辑门阵列(FPGA:F ield-Programm ab le Gate Array)设计了一个高速加密芯片。
2.
Its applications in constructing nonlinear combining functions are studied and some constructional theorems based on this class functions are obtained.
讨论了不重复齐次 k次布尔函数的密码性质,给出了这类函数所满足非线性准则;研究了这类函数在非线性组合函数构造中的应用,得到了几个基于这类函数的构造定理。
3)  combined kernel function
组合核函数
1.
As the importance of kernel function for support vector machine,and the development of kernel function,uses combined kernel function in support vector machine,combines polynomial kernel fu
鉴于核函数对支持向量机的重要性以及当前核函数的发展,在支持向量机中采用组合核函数的思想,将多项式核函数和径向基核函数组合形成组合核函数,提出了基于KPCA的组合核函数SVM检测模型,以期待能够获取更好的检测性能,并使用KDDCUP99数据集进行试验验证,表明该模型与基于KPCA的SVM检测模型相比,检测效率稍好,但时间效率有些许下降,总体来说两者性能基本相当,但本模型明显具有更好的泛化能力和稳定性。
2.
A combined kernel function of GPR(CKGPR) obtained by additive single standard covariance functions is putted forward to overcome poor generalization ability of single kernel function.
将高斯过程回归引入边坡非线性变形时序分析,采用单一核函数之和作为高斯过程回归的组合核函数以提高其泛化性能。
4)  linear combination of exponential functions
指数函数线性组合
5)  Linear combination of Bessel functions
贝塞尔函数的线性组合
6)  the kernel of linear function
线性函数的核
1.
Discussed the relationship between the kernel of linear functions and their linearly dependence.
讨论线性函数的核与其线性相关性的关系,给出了线性函数线性相关性的几个等价条件,进一步丰富了线性函数的理论。
补充资料:函数逼近,线性方法


函数逼近,线性方法
pproximation of functions, Mnear methods

  函数通近,线性方法【即pro劝ma柱佣of如口比此,Unearmethds;即面.橄...中伸叫浦月.州白.eM曰’O周曰!甲的-习..‘。侧.1由线性算子所定义的逼近方法.如果在赋范线性空间X中将线性流形(线性子空间)选作逼近集,则任何将函数f任X变换成函数U汀,t)=(Uf)(t)‘灾且满足’一U(。:f,+。2f2,r)=。IU汀,,t)+aZU价,r)(其中“1和气为任意数)的线性算子U均定义了灾中函数对X中函数的一种线性逼近方法(1i ncar approxi-mation method).一个线性逼近方法称为是射影的(P rojeCtive)如果对所有fe贝,U以t)=f(O;称为是正的(户犯itive),如果对非负函数f有U(f,r))0. 最有意思的是有限维数的情形.此时,若贝二贝、是N维子空间,则有 八 U以‘)=饰以,)=艺e*汀)叭(,),(1) k二1其中{叭(t)}犷是灾、的基底,吼为定义在X上的线性泛函.线性无关系{叭(t)}犷和泛函集{q}仁的选取依赖于构造线性方法时所用函数的有关信息.如果几们二了仇)(这里{气片是f的定义域中的固定点组玉且叭(t.卜0,(i笋k),叭(tk)=1,则U从工气)=f(t*)伍=1,…,扔,此时得到一种插值方法(interpolation method)(如,Lag-ran罗插值多项式或播值样条(interpolation spline)).如果X=H是托lbert空间,吼汀)为函数f关于标准正交系{叭(t)}的Fourier系数,则(1)的右端的和式导致了X到贝N上的正交投影线性方法(li near methodoforthogonal Projection);此时, ,,介饰汀,”一萝…卜詹:一……。因此,可用函数叭的线性组合对f作最佳逼近. 线性逼近方法的理论中最引人注目的是收敛问题.令x为一Banach空间,{甲:(t),中2(t),…}是X上某个线性无关函数系,令灾N为这个系的前N(N=1,2,…个元素形成的子空间,叽为X到贝八N二1,2,…上的有界线性算子.对任何f‘X,收敛关系式珠以O~f(t)(在11叽一fllx~0(N~的)的意义下)成立,当且仅当:l)U、的范数列11叭}}有界,见B田.山-Stei曲aus定理(Banach一Steinhaus theorem):2)对于X中处处稠密的集合A上的所有函数f有认以t)一f(O.特别地,在周期为27r的函数空间乌=乌[0,2司(l  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条