1) analysis of dynamic improving hierarchical process
动态改进层次分析法
2) improved AHP
改进层次分析法
1.
Evaluation on the Loading Plan of Exceptional Dimension Freight with Improved AHP;
运用改进层次分析法评价阔大货物装载加固方案
2.
Fuzzy Evaluation on Soil Fertility of Cultivated Land Based on GIS and Improved AHP——A Case of Pu`an County in Guizhou Province
基于GIS和改进层次分析法的耕地土壤肥力模糊评价——以贵州省普安县为例
3.
3 by 8 evaluation index of elevation,slope,cultivated thickness,pH,organic material,total nitrogen,active P and active K,the improved AHP,the fuzzy evaluation mathematical model.
选择海拔、坡度、耕层厚度、pH值、有机质、全氮、速效磷、速效钾8个评价指标,用改进层次分析法确定指标权重,以模糊数学理论为基础,在ArcGIS8。
3) improved Analytic Hierarchy Process
改进层次分析法
1.
The procedures of the improved analytic hierarchy process and the principles of fuzzy comprehensive evaluation were briefly introduced.
介绍了改进层次分析法及模糊综合评价法的原理,提出了将改进层次分析法和模糊综合评价相结合的决策模型。
2.
Taking into account of the main restrictions,the proposed replanning model establishes a decision model for replanning based on an improved analytic hierarchy process.
自治式水下机器人的重规划决策是一个多约束条件下的动态优化问题,考虑到自治式水下机器人重规划决策时的主要约束条件,建立了分层递阶的重规划决策模型,分析了基于改进层次分析法的重规划决策过程,获得了满意的应对策略。
3.
Next, the evaluation method that combined the Improved Analytic Hierarchy Process with the indicator check list was decided.
第一步,明确企业进行安全绩效评估的必要性(即why);第二步,根据文献总结筛选与理论分析相结合的方法提出了适用于地下金属矿山企业安全绩效评估的6个一级指标和26个二级指标(即what);第三步,确定了改进层次分析法与指标测评检查表相结合的方式作为安全绩效评估方法(即how),并对实施安全绩效评估体系的人员组织保证和时间、范围等方面作了说明(即who、when、where);第四步,将设计好的安全绩效评估体系在企业中进行应用,得出企业的安全绩效评估结果。
4) advanced AHP
改进层次分析法
1.
According to the advanced AHP, the weight values given by every expert of the indices could be received, they were determinated by entropy theory, then the synthetic weight values were received.
该方法在改进层次分析法的基础上,得出各位专家赋予的相对于上一层次同一指标本层次各指标的权重,运用熵值理论对各专家评估水平赋予权重,最后得到指标的合成权重。
6) improved analytic hierarchy process
改进的层次分析法
1.
During the evaluation,the weight of the factors and each hierarchy is decided by improved analytic hierarchy process(AHP),and the fuzzy operational criterion adopts weighted average method.
评估过程中以改进的层次分析法确定不同层次和因素的重要度,以加权平均方法为模糊运算准则。
2.
In the system,the weight vectors can be determined by the improved analytic hierarchy process method,a fuzzy model c.
引入了改进的层次分析法确定指标权重向量,采用模糊理论进行综合评价,并以实例进行分析。
3.
This pater constuct a evaluated modle of work ability by using an improved analytic hierarchy process .
电力部门的核心员工在企业中具有特殊的地位,对他们的合理评价、选拔对企业的凝聚力、长远发展能力意义重大,本文利用改进的层次分析法构建工作能力评价模型,优化评价指标的权重,确定评价集评价矩阵,最终得到员工的综合成绩。
补充资料:层次分析法
将决策问题有关的元素分解成目标、准则、方案等层次,在此基础上进行定性和定量分析的决策方法。它的英文缩写为AHP。这种方法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息把决策者的决策思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
决策步骤 应用层次分析法对决策问题进行决策分析时的步骤是:①建立一个多层次的递阶结构,以确定决策问题各有关元素间的递阶关系。首先分析问题所包含的元素及其相互关系。根据这些关系和要达到的目标将元素分解成不同层次。如果决策问题所涉及的元素较少,而且元素间的关系也较明确,则可凭经验直接建立结构,否则可以采用解释结构模型的方法来建立结构。②建立判断矩阵,并据此计算各元素的优先级权重。用上一层次中的每一元素作为下一层元素的判断准则,分别对下一层的元素进行两两比较,比较其对于准则的重要程度,并按事前规定的标度定量化,建立判断矩阵。通过计算该矩阵的最大特征根和它的正交化特征向量,得出该层元素对于该准则的优先级权重。③确定决策问题的总体优先级的组合权重。为了得到某层元素对于总体目标的组合权重,把上一层次中每个元素都作为下一层元素的判断准则,得出下层元素对于上一层各元素的权重,最后用上一层元素的组合权重加权平均,得出下层各元素的组合权重,并用它来决定下一层元素的组合权重。这样得到的最下层元素的组合权重就反映最下层所列元素对于总体目标的重要程度。④分析计算结果,并根据它们作出相应决策。
应用举例 有一笔资金可用来投资生产家用电器产品、传统产品或某种紧俏产品等三种产品:生产家用电器产品能获得较大利润,但竞争厂家多,故所冒风险相对说来最大,且以后要转产其他产品比较困难;生产传统产品与生产家用电器产品相比利润小,但所冒风险也较小,且转产方便;生产某种紧俏产品的利弊介于生产家用电器和传统产品两者之间。投资者希望投资能获得较大利润,又要求风险小些,转产方便些。显然,上述要求是相互矛盾的。采用层次分析法对这一决策问题进行定性和定量分析,并对投资方案作出选择如下:①建立决策问题各元素的多层次递阶结构(见图)。②建立判断矩阵,确定各层次元素的优先级权重。可按表1定义的标度建立判断矩阵,并据此计算同层元素优先级权重。如先由最上层投资作为准则来建立第二层的判断矩阵。如矩阵中第1行为利润C1,C1与第1列C1比,两元素同样重要,故判断矩阵元素为1,C1与C2比,即利润与风险程度比,因投资主要为获取利润,故C1比C2稍重要,则确定元素为3,C1与C3比较为重要,则确定元素为5。反之,C2与C1比,其元素为1/3,C3与C1比,其元素为1/5,余类推。接着可根据判断矩阵计算各元素优先级权重如下:先计算判断矩阵各行元素乘积的n次根,则C1行为,C2行为,C3行为。然后将所有计算所得数值相加2.47+0.87+0.46=3.80,用此除以每行乘积的n次根的数值,即2.47/3.80=0.648,0.87/3.80=0.230,0.46/3.80=0.122,所得数值即分别为各元素的优先级权重,记在表2的右端。由表2可知,如果以投资为准则来衡量三个元素重要程度,则考虑利润是主要的,其次再考虑风险,最后才是转产。同理,可根据利润为准则来判断下一层三个元素的判断矩阵及相应的优先级权重(表3)。同理可得其他两个判断矩阵和相应的优先级权重(表4和表5)。③确定总体优先级权重得表6。由表6可知,总体优先级权重是最后一层元素按上一层次某一准则所得的优先级权重乘以该准则的优先级权重所得乘积,并依此相加所得,如方案I1的总体优先级权重为 0.384+0.024+0.010=0.418。同理可得方案I2和方案I3的总体优先级权重为0.284和0.294。④从以上计算总体优先级权重可知,总的说来方案I1的权重最大,说明生产家用电器产品的方案对投资者来说是较为满意的方案,其次是方案I3、方案I2。
决策步骤 应用层次分析法对决策问题进行决策分析时的步骤是:①建立一个多层次的递阶结构,以确定决策问题各有关元素间的递阶关系。首先分析问题所包含的元素及其相互关系。根据这些关系和要达到的目标将元素分解成不同层次。如果决策问题所涉及的元素较少,而且元素间的关系也较明确,则可凭经验直接建立结构,否则可以采用解释结构模型的方法来建立结构。②建立判断矩阵,并据此计算各元素的优先级权重。用上一层次中的每一元素作为下一层元素的判断准则,分别对下一层的元素进行两两比较,比较其对于准则的重要程度,并按事前规定的标度定量化,建立判断矩阵。通过计算该矩阵的最大特征根和它的正交化特征向量,得出该层元素对于该准则的优先级权重。③确定决策问题的总体优先级的组合权重。为了得到某层元素对于总体目标的组合权重,把上一层次中每个元素都作为下一层元素的判断准则,得出下层元素对于上一层各元素的权重,最后用上一层元素的组合权重加权平均,得出下层各元素的组合权重,并用它来决定下一层元素的组合权重。这样得到的最下层元素的组合权重就反映最下层所列元素对于总体目标的重要程度。④分析计算结果,并根据它们作出相应决策。
应用举例 有一笔资金可用来投资生产家用电器产品、传统产品或某种紧俏产品等三种产品:生产家用电器产品能获得较大利润,但竞争厂家多,故所冒风险相对说来最大,且以后要转产其他产品比较困难;生产传统产品与生产家用电器产品相比利润小,但所冒风险也较小,且转产方便;生产某种紧俏产品的利弊介于生产家用电器和传统产品两者之间。投资者希望投资能获得较大利润,又要求风险小些,转产方便些。显然,上述要求是相互矛盾的。采用层次分析法对这一决策问题进行定性和定量分析,并对投资方案作出选择如下:①建立决策问题各元素的多层次递阶结构(见图)。②建立判断矩阵,确定各层次元素的优先级权重。可按表1定义的标度建立判断矩阵,并据此计算同层元素优先级权重。如先由最上层投资作为准则来建立第二层的判断矩阵。如矩阵中第1行为利润C1,C1与第1列C1比,两元素同样重要,故判断矩阵元素为1,C1与C2比,即利润与风险程度比,因投资主要为获取利润,故C1比C2稍重要,则确定元素为3,C1与C3比较为重要,则确定元素为5。反之,C2与C1比,其元素为1/3,C3与C1比,其元素为1/5,余类推。接着可根据判断矩阵计算各元素优先级权重如下:先计算判断矩阵各行元素乘积的n次根,则C1行为,C2行为,C3行为。然后将所有计算所得数值相加2.47+0.87+0.46=3.80,用此除以每行乘积的n次根的数值,即2.47/3.80=0.648,0.87/3.80=0.230,0.46/3.80=0.122,所得数值即分别为各元素的优先级权重,记在表2的右端。由表2可知,如果以投资为准则来衡量三个元素重要程度,则考虑利润是主要的,其次再考虑风险,最后才是转产。同理,可根据利润为准则来判断下一层三个元素的判断矩阵及相应的优先级权重(表3)。同理可得其他两个判断矩阵和相应的优先级权重(表4和表5)。③确定总体优先级权重得表6。由表6可知,总体优先级权重是最后一层元素按上一层次某一准则所得的优先级权重乘以该准则的优先级权重所得乘积,并依此相加所得,如方案I1的总体优先级权重为 0.384+0.024+0.010=0.418。同理可得方案I2和方案I3的总体优先级权重为0.284和0.294。④从以上计算总体优先级权重可知,总的说来方案I1的权重最大,说明生产家用电器产品的方案对投资者来说是较为满意的方案,其次是方案I3、方案I2。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条