1) subproduct radical mapping
子积根式映射
1.
In this paper it is proved that a subproduct radical class of l groups is uniquely determined by the corresponding subproduct radical mapping, and that the product of two subproduct radical classes is also a subproduct radical class.
本文证明了l-群的子积根式类由其对应的子积根式映射所唯一决定,并证明了两个子积根式类的积还是一个子积根式类。
2) radlcal mapping
根式映射
3) radical mapping
子积根式
1.
In this paper we proved that a sub-product class U is determined by the sub-product radical mapping G→U(G).
令为G的直和项且G/H∈u}称作是G的一个子积根式。
4) subproduct radical class
子积根式类
1.
A family R of l groups is considered as a subproduct radical class if R is clsoed under taking convex l subgroups, forming joins of convex l subgroups and forming direct products.
一组l-群U称作一个子积根式类,如果它封闭于取凸l-子群、作凸l-子群的并及作完全次直积。
5) area-preserving map
保积映射
1.
The computation of the twist coefficient of the Poincarémap of Newtonian equations together with the stability theory of fixed points of area-preserving maps is applied in the study.
本文通过计算牛顿方程Poincaré映射的扭转系数公式,并结合保积映射对稳定性理论进行研究。
6) equiareal mapping
等积映射
补充资料:积积
1.长久累积。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条