1) iterative inverse filtering
迭代逆滤波
1.
An iterative inverse filtering algorithm(ITIF)is used for estimating and updating theunknown input with the orthogonal sub-space method applied later for system identification.
研究了输入未知时,根据系统运行实测响应数据识别系统结构,采用迭代逆滤波算法,用高阶AR模型对输入信号进行估计,以便最终识别系统;在模型识别中采用了正交子空间法,这一方法将正交化引入时间序列,从而实现系统阶次的自动估计及模型识别。
2) Iterative adaptive inverse filtering(IAIF)
迭代自适应逆滤波
3) iterative filtering
迭代滤波
1.
A SAR image nonlinear iterative filtering approach based on correlated neighborhood model is presented,it can restrain error accumulation.
提出一种基于相关邻域模型可抑制误差积累的SAR图像非线性迭代滤波方法。
4) iterated Kalman filtering
迭代Kalman滤波
5) iterated unscented Kalman filter
迭代无迹Kalman滤波
1.
Here,an iterated unscented Kalman filter was used to generate the initial particle distribution for the particle filter.
该文用迭代无迹Kalman滤波产生粒子滤波的建议分布,提出了一种新的粒子滤波算法——迭代无迹Kalman粒子滤波。
6) iterative median filter
迭代中值滤波
1.
An adaptive two-pass rank order filter based on iterative median filter;
基于迭代中值滤波的自适应两级排序滤波算法
补充资料:层层迭迭
1.见"层层迭迭"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条